
Compositional Sequentialization of Periodic

Programs

Sagar Chaki1 Arie Gurfinkel1 Soonho Kong1 Ofer Strichman2

1 CMU, Pittsburgh, USA 2 Technion, Haifa, Israel
{chaki,arie}@cmu.edu soonhok@cs.cmu.edu ofers@ie.technion.ac.il

Abstract. We advance the state-of-the-art in verifying periodic pro-
grams – a commonly used form of real-time software that consists of
a set of asynchronous tasks running periodically and being scheduled
preemptively based on their priorities. We focus on an approach based
on sequentialization (generating an equivalent sequential program) of a
time-bounded periodic program. We present a new compositional form
of sequentialization that improves on earlier work in terms of both scal-
ability and completeness (i.e., false warnings) by leveraging temporal
separation between jobs in the same hyper-period and across multiple
hyper-periods. We also show how the new sequentialization can be fur-
ther improved in the case of harmonic systems to generate sequential
programs of asymptotically smaller size. Experiments indicate that our
new sequentialization improves verification time by orders of magnitude
compared to competing schemes.

1 Introduction

Real-Time Embedded Software (RTES) controls a wide range of safety-critical
systems – ranging from airplanes and cars to infusion pumps and microwaves
– that impact our daily lives. Clearly, verification of such systems is an im-
portant problem domain. A modern RTES is inherently asynchronous (since it
interacts with the real world), concurrent (to increase CPU utilization allowing
for smarter, smaller, and more efficient systems), and must adhere to timing
constraints. Developing such a RTES is therefore quite challenging.

A common way to address this challenge is to develop the RTES not as
an arbitrary concurrent system, but as a periodic program (PP). Indeed, PPs
are supported by many real-time OSs, including OSEK [1], vxWorks [3], and
RTEMS [2]. A PP C consists of a set of asynchronous tasks {τi}i, where each
task τi = (Ii, Ti, Pi, Ci, Ai) is given by a priority Ii (higher number means higher
priority), a loop-free body (i.e., code) Ti, a period Pi, a worst case execution time
(WCET) Ci and an arrival time Ai. Each execution of Ti is called a job. The
least common multiple of the periods of all the tasks is called a hyper-period.

The execution of C consists of a number of threads – one per task. A legal
execution of C is one in which for every i, Ti is executed by its corresponding
thread exactly once between time Ai + (k − 1) · Pi and Ai + k · Pi, for all
natural k > 0. A common method for achieving this goal in the real-time systems



literature is to assume a preemptive fixed priority-based scheduler, and assign
priorities according to the Rate Monotonic Scheduling (RMS) discipline. In RMS,
shorter period implies higher priority. This is why a priority Ii is an element in
the definition of τi. We assume that C is schedulable (i.e., it only produces legal
executions) under RMS.

An example of a PP is the nxt/OSEK-based [1] LEGO Mindstorms controller
(described further in Sec. 7) for a robot simulating a Turing machine. It has
four periodic tasks: a TapeMover, with a 250ms period, that moves the tape; a
Reader, with a 250ms period, that reads the current symbol; a Writer, with a
250ms period, that writes the current symbol; and a Controller, with a 500ms
period, that issues commands to the other three tasks. Another example is a
generic avionic mission system that was described in [18]. It includes 10 periodic
tasks, including weapon release (10 ms), radar tracking (40 ms), target tracking
(40 ms), aircraft flight data (50 ms), display (50 ms) and steering (80 ms).

The topic of this paper is verification of logical properties (i.e., user supplied
assertions, race conditions, deadlocks, API usage, etc.) of periodic programs.
Surprisingly, this verification problem has not received significant research atten-
tion. While a PP is a concurrent program with priorities and structured timing
constraints, most recent work on concurrent verification does not support prior-
ities or priority-locks used by such systems, which motivates a solution tailored
specifically to this domain.

In our previous work [7], we presented an approach for time-bounded verifica-
tion of PPs, that given a PP C with assertions and a time-bound W , determines
whether the assertions of C can be violated within the time bound W . The key
idea there is to use W to derive an upper bound on the number of jobs that each
task can execute within W , sequentialize the resulting job-bounded concurrent
program, and use an off-the-shelf sequential verifier such as CBMC [6]. We call
the sequentialization used in [7] monolithic (monoSeq).

Compositional Sequentialization. In this paper, we develop a new composi-
tional sequentialization (compSeq) that improves substantially over monoSeq
in terms of both scalability and completeness (i.e., less false warnings). The com-
positional nature of compSeq emerges from: (i) its use of information about
tasks to deduce that certain jobs are temporally separated, i.e., one cannot pre-
empt the other; and (ii) using this information to restrict legal thread interleav-
ings. In particular, compSeq leverages two types of temporal separation between
jobs: (i) among jobs in the same hyper-period (intra-HP); and (ii) between jobs
from different hyper-periods (inter-HP). We illustrate these concepts – and thus
the key difference between compSeq and monoSeq – with an example.

Intra-HP Temporal Separation. Consider a PP C = {τ0, τ1, τ2}, where

τ0 = (0, T0, 100, 50, 0) τ1 = (1, T1, 50, 1, 0) τ2 = (2, T2, 25, 1, 0) (1)

That is, task τ0 has the lowest priority (i.e., 0), body T0, period 100, WCET 50,
and arrival time of 0, and similar for the other tasks. During the time-bound



W = 100, there is one execution of T0, 2 of T1 and 4 of T2. Hence, monoSeq
constructs sequentialization of the following concurrent program:

T0 ‖ (T1 ;T1) ‖ (T2 ;T2 ;T2 ;T2) (2)

and adds additional constraints to remove interleavings that are infeasible due
to timing and priority considerations. monoSeq ignores the arrival time infor-
mation and assumes that the lowest priority task τ0 can be preempted by any
execution of any higher priority task. This leads to large number of interleav-
ings negatively affecting both scalability and completeness. In contrast, the new
approach compSeq, notes that τ2 arrives at the same time as τ1 and τ0 and is
therefore given the CPU first. Hence the first instance of τ2 does not interleave
with any other task. Similarly, it notes that because of the WCET, the last ex-
ecution of τ2 does not interleave with any other task either. Thus, it uses the
following concurrent program

T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ;T2 (3)

That is, the single repetition of the lowest priority task τ0 is interleaved only
with some of the executions of higher-priority tasks. In this example, it is easy to
see that both (2) and (3) over-approximate C, but (3) is more sequential, hence
it leads to a sequentialization that has fewer spurious interleavings and is easier
to analyze.

Inter-HP Temporal Separation. Next, suppose the time-bound W is increased to
200 (i.e., to two hyper-periods). In this case, the concurrent program constructed
by monoSeq becomes:

(T0 ;T0) ‖ (T1 ;T1 ;T1 ;T1) ‖ (T2 ;T2 ;T2 ;T2 ;T2 ;T2 ;T2 ;T2) (4)

However, note that 100 is the hyper-period of C. It is easy to see that if all
tasks initially arrive at time 0, then any execution that starts within a hyper-
period ends before the end of the hyper-period. Thus, instead of monolithically
encoding all execution in a given time bound, it is sufficient to encode repetitions
of a hyper-period. In particular, in this example, compSeq sequentializes the
following program:

T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ;T2)
︸ ︷︷ ︸

Sequentialization of HP#1

; (T2 ;T1 ;(T0 ‖ (T2 ;T2 ;T1)) ;T2)
︸ ︷︷ ︸

Sequentialization of HP#2

(5)

Note that verifying the sequentialization of one of the two hyperperiods (HP#1
or HP#2) in isolation is not sound since they communicate via global variables.

Our experimental results show that the difference in the encoding has a
dramatic effect on performance. We show that monoSeq does not scale at all
on a small (but realistic) robotics controller, but compSeq is able to solve many
verification problems in the order of minutes.



Contributions. The paper makes the following contributions. First, we present
compSeq when the time bound is a single hyper-period of C, focusing on its use
of intra-HP separation. Interestingly, we show that assuming that all tasks start
together – a common assumption in schedulability analysis [17] – is unsound for
verification (see Theorem 2). That is, a program is schedulable iff it is schedulable
assuming that all tasks start at time 0. But, the program might be safe when all
tasks start together, but not safe if they start at different times.

Second, we improve compSeq for the case of harmonic PPs – a class of
PPs in which for every pair of tasks τ1 and τ2, lcm(P1, P2) = max(P1, P2), i.e.,
P1 is a multiple of P2. In practice, PPs are often designed to be harmonic, for
example, to achieve 100% CPU utilization [13] and more predictable battery us-
age [20]. The improved version, called harmonicSeq, uses intra-HP separation
just like compSeq, but generates sequential programs of asymptotically smaller
size (both theoretically and empirically).

Third, we extend compSeq (and harmonicSeq) to multiple hyper-periods
of C by applying it individually to each hyper-period and composing the results
sequentially, thereby leveraging inter-HP separation. We show that while this is
unsound in general (see the discussion after Theorem 3), i.e., a periodic program
is not always logically equivalent to repeating the sequentialization of its hyper-
period ad infinitum, it is sound under the specific restrictions on arrival times
already imposed by [7].

We have implemented our approach and validated it by verifying several
RTES for controlling two flavors of LEGO Mindstorms robots – one that self-
balances, avoids obstacles and responds to remote controls, and another that
simulates a Turing machine. We observe that verification with compSeq is
much faster (in one case by a factor of 480x) than that with monoSeq. The
improvement is more pronounced with increasing number of hyper-periods. In
many cases, verification with compSeq completes while monoSeq runs out of
resources. Further details are presented in Sec. 7.

The rest of this paper is organized as follows. Sec. 2 discusses preliminary
concepts. Sec. 3 and Sec. 4 present compSeq and harmonicSeq, respectively,
but for one hyper-period. Sec. 5 extends them to multiple hyper-periods. In
Sec. 6, we survey related work. Sec. 7 presents experimental results, and Sec. 8
concludes.

2 Preliminaries

A task τ is a tuple 〈I, T, P, C,A〉, where I is the priority, T – a bounded procedure
(i.e., no unbounded loops or recursion) called the task body, P – the period, C
– the worst case execution time (WCET) of T , and A, called the release time,
is the time at which the task is first enabled1. A periodic program (PP) is a
set of tasks. In this paper, we consider a N -task PP C = {τ0, . . . , τN−1}, where
τi = 〈Ii, Ti, Pi, Ci, Ai〉. We assume that: (i) for simplicity, Ii = i; (ii) execution

1 We assume that time is given in some fixed time unit (e.g., milliseconds).



Task Ci Pi

τ2 1 4
τ1 2 8
τ0 8 16

4 8 12 16

τ0

τ1

τ2

(a) (b)

Fig. 1. (a) Three tasks from Example 1; (b) A schedule of the three tasks.

times are positive, i.e., Ci > 0; and (iii) priorities are rate-monotonic and distinct
– tasks with smaller period have higher priority.

Semantics. A PP is executed by running each task periodically, starting at
the release time. For k ≥ 0 the k-th job of τi becomes enabled at time Ak

i =
Ai + k×Pi. The execution is asynchronous, preemptive, and priority-sensitive –
the CPU is always given to the enabled task with the highest priority, preempting
the currently executing task if necessary. Formally, the semantics of C is the
asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(Wait(τi, ki)) (Ti ; ki := ki + 1) (6)

where ‖ is priority-sensitive interleaving, ki ∈ N is a counter and Wait(τi, ki)
returns false if the current time is greater than Aki

i , and otherwise blocks until

time Aki

i and then returns true.
Schedulability. An execution of each task body Ti in (6) is called a job. A job’s

arrival is the time when it becomes enabled (i.e.,Wait(τi, k) in (6) returns true);
start and finish are the times when its first and last instructions are executed,
respectively; response time is the difference between its finish and arrival times.
The response time of task τi, denoted by RTi, is the maximum response times
of all of its jobs over all possible executions. Since tasks have positive execution
times, their response times are also positive, i.e., RTi > 0.

Note that Wait in (6) returns true if a job has finished before its next
period. A periodic program is schedulable iff there is no run of (6) (legal with
respect to priorities) in which Wait returns false. That is, a program is schedu-
lable iff in every run every task starts and finishes within its period.

There are well-known techniques [17] to decide schedulability of periodic pro-
grams. In this paper, we are interested in logical properties of periodic programs,
assuming that they meet their timing constraints. Thus, we assume that C is a
schedulable periodic program.

Example 1. Consider the task set in Fig. 1(a). Suppose that RT2 = 1, RT1 = 3
and RT0 = 16. A schedule demonstrating these values is shown in Fig. 1(b).

Time-Bounded Verification. Initially, in Sec. 3 and 4, we assume that C exe-
cutes for one “hyper-period” H. The hyper-period [17] of C is the least common



multiple of {P0, . . . , Pn−1}. Thus, we verify the time-bounded periodic program
CH that executes like C for time H and then terminates. Subsequently, in Sec. 5,
we show how to extend verification of CH to multiple hyper-periods.

Throughout the paper, we assume that the first job of each task finishes
before its period, i.e.,

∀0 ≤ i < N � Ai +RTi ≤ Pi . (7)

Under this restriction, the number of jobs of task τi that executes in CH is:

Ji =
H

Pi

. (8)

The semantics of CH is the asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(ki < Ji ∧Wait(τi, ki)) (Ti ; ki := ki + 1) . (9)

This is analogous to the semantics of C in (6) except that each task τi executes
Ji jobs. We write J(τ, k) to denote the k-th job (i.e., the job at the k-th position)
of task τ . Thus, the set of all jobs of CH is:

J =
⋃

0≤i<N

{J(τi, k) | 0 ≤ k < Ji} . (10)

3 Job-Bounded Verification

We use a two-step approach to verify anN -task periodic program C = {τ0, . . . , τN−1}
under a time boundH. The first step, sequentialization, outputs a non-deterministic
sequential program S with assume statements, as shown in Algorithm 1. The
second step is the verification of S with an off-the-shelf program verifier. In the
rest of this section, we present our first sequentialization algorithm compSeq.

Sequentialization: Intuition. compSeq uses the idea that any execution π of CH
can be partitioned into scheduling rounds in the following way: (a) π begins in
round 0, and (b) a round ends and a new one begins every time a job ends (i.e.,
the last instruction of some task body is executed). For example, the bounded
execution shown in Fig. 1(b) is partitioned into 7 rounds as follows: round 0 is
the time interval [0, 1] – the end of the first job of τ2, round 1 is [1, 3] – the end
of the first job of τ1, round 2 is [3, 5] – the end of the second job of τ2 (note that
there is only one job of τ0 and it ends at time 16), round 3 is [5, 9], etc.

Observe that R = |J| jobs start and end in π, and thus π has R rounds.
Therefore, compSeq reduces the bounded concurrent execution of CH into a
sequential execution with R rounds. Initially, jobs are allocated (or scheduled)
to rounds. Then, each job is executed independently, in lexicographic order of
increasing priority and job position. That is, lower priority jobs are executed
first, and jobs of the same task are ordered by their position in the task.



In addition, compSeq leverages arrival time of each job in two important
ways. First, by observing that if in every execution a job j completes before an-
other job j′ arrives, then j can precede j′ in the sequentialization, independently
of the priorities of the jobs. Second, by only exploring job schedules that do not
violate arrival constraints. This has several benefits. First, compSeq is more
complete – it generates fewer false warnings. Second, it enables eager checking
for user-specified assertions incrementally.

We now present compSeq in detail. We first describe the job ordering used
by compSeq, and then the sequential program S that compSeq generates.

Job Ordering. Consider a job j = J(τ, k). Let A be the arrival time of the first job
of τ and P be the period of τ . Then, the arrival time of j is A(j) = A+ k × P .
Similarly, let RT be the response time of τ . Then the departure time of j is
D(j) = A(j) + RT . Since we assume that RT > 0, we know that A(j) < D(j).
Let π(j) denote the priority of its task τ . We first present three ordering relations
⊳, ↑ and ⊏ on jobs. Informally, j1 ⊳ j2 means that j1 always completes before
j2 begins, j1 ↑ j2 means that it is possible for j1 to be preempted by j2, and ⊏

is the union of ⊳ and ↑.

Definition 1. The ordering relations ⊳, ↑ and ⊏ are defined as follows:

j1 ⊳ j2 ⇐⇒ (π(j1) ≤ π(j2) ∧D(j1) ≤ A(j2)) ∨ (π(j1) > π(j2) ∧A(j1) ≤ A(j2))

j1 ↑ j2 ⇐⇒ π(j1) < π(j2) ∧A(j1) < A(j2) < D(j1)

j1 ⊏ j2 ⇐⇒ A(j1) < A(j2) ∨ (A(j1) = A(j2) ∧ π(j1) > π(j2))

Lemma 1 (proof is in Appendix A) relates ⊏ with ⊳ and ↑.

Lemma 1. For any two jobs j1 and j2, we have:

j1 ⊏ j2 ⇐⇒ j1 ⊳ j2 ∨ j1 ↑ j2 (11)

Note that j1 ⊏ j2 means that either j1 always completes before j2, or it is
possible for j1 to be preempted by j2. Also, ⊏ is a total strict ordering since it is
a lexicographic ordering by (arrival time, priority). Moreover, ⊏ is computable
in O(R · log(R)) time, where R is the total number of jobs.

Construction of S. The structure of S is given by the pseudo-code in Alg. 1. The
top-level function is main. It sets (line 4) the global variables at the beginning
of the first round to their initial values, and then calls hyperPeriod to execute
the sequential program corresponding to a time-bound of H.

hyperPeriod first calls scheduleJobs to create a legal job schedule – i.e.,
assign a starting round start[j] and an ending round end[j] to each job j. It then
executes, in the order induced by ⊏, each job j by invoking runJob(j).

In scheduleJobs, line 12 ensures that start[j] and end[j] are sequential and
within legal bounds; lines 13–14 ensure that jobs are properly separated; line 15
ensures that jobs are well-nested – if j2 preempts j1, then it finishes before j1.



Algorithm 1 The sequentialization S of the time-bounded periodic program
CH. Notation: J is the set of all jobs; G is the set of global variables of C; ig is
the initial value of g according to C; ‘∗’ is a non-deterministic value.

1: var rnd, start[ ], end[ ], localAssert[ ]
2: ∀g ∈ G � var g[ ], vg[ ]

3: function main( )
4: ∀g ∈ G � g[0] := ig
5: hyperPeriod()

6: function hyperPeriod( )
7: scheduleJobs()

8:
∀g ∈ G � ∀r ∈ [1, R)�

vg[r] := ∗; g[r] := vg[r]
let the ordering of jobs by ⊏ be
j0 ⊏ j1 ⊏ . . . jR−1

9: runJob(j0); . . . ; runJob(jR−1)

10: function scheduleJobs( )

11: ∀j ∈ J � start[j] = ∗; end[j] = ∗
// Jobs are sequential

12:
∀i ∈ [0, N) � ∀k ∈ [0, Ji) � assume
(0 ≤ start[J(i, k)] ≤ end[J(i, k)] < R)

// Jobs are well-separated
13: ∀j1 ⊳ j2 � assume(end[j1] < start[j2])
14: ∀j1 ↑ j2 � assume(start[j1] ≤ start[j2])

// Jobs are well-nested

15:
∀j1 ↑ j2 � assume(start[j2] ≤ end[j1]

=⇒ (start[j2] ≤ end[j2] < end[j1]))

16: function runJob(Job j)
17: localAssert[j] := 1
18: rnd := start[j]
19: T̂ (j)
20: assume(rnd = end[j])
21: if rnd < R− 1 then

22:
∀g ∈ G � assume

(g[rnd] = vg[rnd+ 1])

23:
X := {j′ | (j′ = j ∨ j′ ↑ j) ∧
(∀j′′ 6= j � j′ ↑ j′′ ⇒ j′′ ⊏ j)}

24: ∀j′ ∈ X � assert(localAssert[j′])

25: function T̂ (Job j)
Obtained from Tt by replacing
each statement ‘st’ with:

26: cs(j) ; st[g ← g[rnd]]
and each ‘assert(e)’ with:

27: localAssert[j] := e

28: function cs(Job j)
29: if (∗) then return false

30: o := rnd ; rnd := ∗
31: assume(o < rnd ≤ end[j])

32:
∀j′ ∈ J � j ↑ j′ =⇒

assume(rnd ≤ start[j′]∨
rnd > end[j′])

33: return true

We assume, without loss of generality, that a job j contains at most one
assert, and use the variable localAssert[j] to represent the argument to this
assertion. runJob(j) first initializes localAssert[j] to 1. It then ensures that j
starts in round start[j] (line 18). Next, it executes the body of j (via T̂ (j)),
ensures that j terminates in round end[j], and ensures consistency of round
end[j] by checking that the final value of g in it equals its guessed initial value
in round end[j] + 1. Finally, it checks whether j caused an assertion violation.

Function T̂ (j) is identical to the body of j’s task, except that it uses variable
g[rnd] instead of g and records the argument to its assertion instead of checking
it. This is important because assertions must be checked only after ensuring
consistency of all relevant rounds. Function T̂ (j) also increases value of rnd
non-deterministically (by invoking function cs) to model preemption by higher
priority jobs. As in other work [14], preemption is only allowed before access of
global variables, without losing soundness.



Soundness of compSeq. The state-of-the-art sequentialization for periodic pro-
grams – which we refer to as monoSeq– was developed and shown to be sound
in our prior work [7]. monoSeq first executes all jobs in increasing order of
priority and job position, then ensures round consistency, and finally checks for
assertion violations. In contrast, in the case of compSeq: (1) jobs are serialized
in the order ⊏; (2) the consistency of round end[j] is checked as soon as job j
completes, we call this eager-check-assumptions ; (3) assertions are also checked
as soon as all jobs that affect the outcome of an assertion has completed, we
call this eager-check-assertions. Theorem 1 (proof is in Appendix B) states that
despite these differences, the soundness of monoSeq to carry over to compSeq.

Theorem 1. Ordering jobs by ⊏, eager-check-assumptions, and eager-check-
assertions are sound.

The set of arrival times is called the phasing. A special case is zero-phasing,
when all tasks start together – i.e., ∀i ∈ [0, N) � Ai = 0. It depends on the
OS whether zero-phasing can be assumed or not. For example, OSEK enforces
zero-phasing while RTLinux does not.

Zero-phasing is a sufficient assumption for completeness of schedulability
analysis, i.e., a system is schedulable for all phasings iff it is schedulable for the
zero-phasing [17]. However, assuming zero-phasing is unsound for verification,
as illustrated by Theorem 2. At the same time, assuming arbitrary phasing (as
in monoSeq) leads to many false positives (see Sec. 7). compSeq handles tasks
with a given phasing. This makes it sound, yet more complete than monoSeq.

Theorem 2. The safety of a periodic program under zero-phasing does not im-
ply its safety under all phasings.

Proof. Consider a periodic program C with two tasks: t1 and t2. The tasks com-
municate via a shared variable x, initially 0. Task t1: period 2ms, priority 1,
T1 is assert(x%2 = 1); task t2: period 1ms, priority 2, T2 is x = x + 1. The
WCET of both tasks is 0.1ms. Under zero phasing, there is no preemption, and
t1 always reads an odd value of x. Hence the assertion succeeds. However, if t1
arrives before t2, then the value of x read by t1 is 0, which fails the assertion.
Therefore, C is safe under zero-phasing, but not under all phasings. Since C is
harmonic, the theorem holds for harmonic periodic programs as well. ⊓⊔

4 Verifying Harmonic Periodic Programs

In the worst case, the number of constraints in scheduleJobs() is quadratic
in the total number of jobs. This is essentially because relations ⊳ and ↑ col-
lectively can have O(R2) job pairs. In this section, we show that for a special
class of periodic programs, known as harmonic programs, we are able to imple-
ment scheduleJobs using O(R ·N) constraints only, where N is the number of
tasks. This leads to our sequentialization algorithm harmonicSeq. Since N is
typically exponentially smaller than R, harmonicSeq yields an asymptotically
smaller job scheduling function.



Algorithm 2 Procedure to assign legal starting and ending rounds to jobs in a
harmonic program.

1: var min[ ],max[ ] //extra variables

2: function scheduleHarmonic( )

3: ∀j ∈ J � start[j] = ∗; end[j] = ∗;min[j] = ∗;max[j] = ∗
// Correctness of min and max

4: ∀n ∈ T � isleaf (n) =⇒ assume(min[n] = start[n] ∧max[n] = end[n])
5: ∀n ∈ T � ¬isleaf (n) =⇒ assume(min[n] = MIN(start[n],min[first(n)]))
6: ∀n ∈ T � ¬isleaf (n) =⇒ assume(max[n] = MAX(end[n],max[last(n)]))

// Jobs are sequential
7: ∀n ∈ T � assume(low(n) ≤ start[n] ≤ end[n] ≤ high(n))

// Jobs are well-separated
8: ∀n ∈ T � hasNext(n) =⇒ assume(max[n] < min[next(n)])
9: ∀j1 ↑ j2 � assume(start[j1] ≤ start[j2])

// Jobs are well-nested
10: ∀j1 ↑ j2 � assume(start[j2] ≤ end[j1] =⇒ (start[j2] ≤ end[j2] < end[j1]))

T (n) = sub-tree of T rooted at n isleaf (n) = true iff n is a leaf node
level(n) = level of node n size(n) = number of nodes in T (n)
id(n) = position of n in the DFS hasNext(n) = true iff n is not the last

pre-ordering of T node at level level(n)
next(n) = node after n at level level(n) first(n) = first child of n
last(n) = last child of n maxid(n) = id(n) + size(n)− 1
low(n) = id(n)− level(n) high(n) = maxid(n)

Fig. 2. Functions on each node n of the job-graph.

A periodic program C = {τ0, . . . , τN−1} is harmonic if ∀0 < i < N � Pi−1|Pi,
where x|y means that x is divisible by y. For 0 ≤ i < N − 1, let r(τi) = Pi/Pi+1.
Note that H = P0 and thus J0 = 1. Also, the taskset from Example 1 defines
a harmonic program. Harmonicity is a common restriction imposed by real-
time system designers, especially in the safety-critical domain. For example, it
is possible to achieve 100% CPU utilization [13] for a harmonic program with
rate monotonic scheduling.

We begin by defining the job-tree T . The nodes of T are the jobs of CH, and
there is an edge from j1 = J(τ1, p1) to j2 = J(τ2, p2) iff π(j2) = π(j1) + 1 ∧
p2/r(τ1) = p1. Thus, the job-tree is a balanced tree of depth N rooted at J(τ0, 0)
and for 0 ≤ i < N−1, each node at level i (the root is at level 0) has ri children.

Note that since C is harmonic, ↑ contains O(R ·N) job pairs. This is because
if j1 ↑ j2, then j1 must be an ancestor of j2 in T , and there are O(R ·N) such
pairs. Moreover, all elements of ↑ can be enumerated in O(R · N) by checking
for each node j2 of T , and each ancestor j1 of j2, whether j1 ↑ j2.

Let nodes at the same level of T be ordered by increasing arrival time. For
each node n ∈ T , we define size(n), first(n), last(n), id(n), maxid(n), level(n),
low(n) and high(n) as in Fig. 2. Note that these are statically computable from



T . Also, maxid(n) = MAXk∈T (n)id(n), low(n) is the earliest round in which
job n can start, and high(n) is the latest round in which job n can finish.

Since each job is a node of T , an assignment to start[ ] and end[ ] is equivalent
to two functions start and end from nodes of T to values in the range [0, R).
This, in turn, induces the following two additional functions from T to [0, R):

min(n) = MINk∈T (n)start(k) max(n) = MAXk∈T (n)end(k)

The difference between harmonicSeq and compSeq is that harmonic-

Seq uses function scheduleHarmonic – shown in Algorithm 2 – instead of
scheduleJobs. The key features of scheduleHarmonic are:

– It uses two additional arrays (defined at line 1) to represent functions min
and max. It adds constraints (lines 4–6) to ensure that these arrays contain
appropriate values. Note that these constraints are based on the following
recursive definition of min and max:

min(n) =

{

start(n) if isleaf(n)

MIN(start(n),min(first(n))) otherwise

max(n) =

{

end(n) if isleaf(n)

MAX(end(n),max(last(n))) otherwise

– It imposes stricter constraints (line 7) over start[ ] and end[ ], compared to
scheduleJobs. Specially, it ensures that low(n) ≤ start[n] ≤ end[n] ≤
high(h) instead of 0 ≤ start[n] ≤ end[n] < R.

– It uses min, max and ↑ (lines 8–9) to ensure separation. Function sched-

uleJobs uses ⊳ and ↑ instead for this purpose.
– The relation ↑ is used (line 10), as in scheduleJobs, to ensure that jobs

are well-nested.

Note that the number of constraints in scheduleHarmonic is O(R · N).
Specifically, to ensure that jobs are sequential, we require O(R) constraints. Also,
since ↑ contains O(R ·N) job pairs, specifying that jobs are well-separated and
well-nested requires O(R ·N) constraints each.

5 Verification Over Multiple Hyper-Periods

In this section, we present an approach to extend job-bounded verification to
the case where the time-bound is a multiple of its hyper-period. Let C be a
schedulable periodic program with hyper-period H and let the time-bound for
verification be (m × H). From (9), it follows that the semantics of C(m×H) is
given by the following asynchronous concurrent program:

‖N−1
i=0 ki := 0 ;while(ki < m× Ji ∧Wait(τi, ki)) (Ti ; ki := ki + 1) . (12)

Let Cm
H be the program that invokes function multiHyper in Fig. 3(a) with

argument m. In other words, Cm
H executes CH sequentially m times. Since the



1: var rnd, start[ ], end[ ]
2: var localAssert[ ]
3: ∀g ∈ G � var g[ ], vg[ ]

4: function multiHyper(k)
5: ∀g ∈ G � g[0] := ig
6: for i = 1 to k do

7: hyperPeriod()
8: ∀g ∈ G � g[0] := g[R− 1]

Task Ai Ci Pi

τ1 1.9 0.5 2
τ2 0 0.1 1

int x=0; int y=0;

void T1() {
int t=y; assert(x == t+2); y=x;

}
void T2() {x++;}

(a) (b)

Fig. 3. (a) Sequentialization for multiple hyper-periods; function hyperPeriod is
shown in Alg. 1; (b) A periodic program C such that C2H is not equivalent to C2H.

arrival-pattern of jobs repeats every hyper-period, it is tempting to conclude
that the semantics of C(m×H) is equivalent to Cm

H . We show that this is true
under our assumption (7) from Sec. 2 on job arrivals, but is not true in general.

Theorem 3. Let C be a schedulable periodic program with hyper-period H sat-
isfying assumption (7) from Sec. 2. Let C(m×H) and Cm

H be programs as defined
above. Then, C(m×H) and Cm

H are semantically equivalent with respect to safety
properties for any natural number m.

Proof. We show, by induction on m, that every execution of C(m×H) is matched
by an execution of Cm

H , and vice versa. The base case (m = 1) is trivial since, by
definition, CH = C1

H. For the inductive case, let m = k + 1 and assume that the
theorem holds for m = k. By assumption (7), every execution of CkH terminates
within time kH. Thus, every execution t of C(m×H) is of the form t1•t2 – where •
denotes concatenation – such that t1 is an execution of CkH and t2 is an execution
of CH. By induction, t1 is also an execution of Ck

H. Therefore, t is an execution
of Ck+1

H = Cm
H . The converse is proven analogously. ⊓⊔

To see that assumption (7) is necessary for Theorem 3, consider the periodic
program C shown in Fig. 3(b). The tasks communicate via two shared variables
x and y. Let m = 2. Note that C2H violates the assertion, whereas C2

H does not.
In C2

H, x == y is an inductive loop invariant: it holds initially, and is maintained
since the single job of τ1 starts after both jobs of τ2. Therefore, the assertion is
never violated since x == y is always true at the beginning of each hyper-period,
and x is incremented twice by the jobs of τ2 before the job of τ1 begins.

However, consider the following execution in C2H: (i) the τ2 jobs from the
first hyper-period set x to 2; (ii) the τ1 job from the first hyper-period set t

to 0; (iii) the second hyper-period begins; (iv) the first job of τ2 in the second
hyper-period arrives, preempts the τ1 job and sets x to 3; (v) the τ1 jobs resumes
and reads the value 3 for x; since the value of t is 0, the assertion is violated.
Therefore, C2H and C2

H are not equivalent with respect to safety properties. Note
that C is harmonic, so this is true for harmonic periodic programs as well.

In summary, Theorem 3 captures the essence of inter-HP temporal separation
between jobs. It allows us to verify C(m×H) by verifying Cm

H instead. Since Cm
H is a



sequential non-deterministic program, it can be verified by any existing software
model checker. Experimental results (see Sec. 7) indicate that this new way of
verifying a periodic program over multiple hyper-periods is orders of magnitude
faster than the state-of-the-art.

6 Related Work

There is a large body of work in verification of logical properties of both sequen-
tial and concurrent programs (see [9] for a recent survey). However, these tech-
niques abstract away time completely, by assuming a non-deterministic scheduler
model. In contrast, we use a priority-sensitive scheduler model, and abstract time
partially via our job-bounded abstraction.

A number of projects [16, 5] verify timed properties of systems using discrete-
time [15] or real-time [4] semantics. They abstract away data- and control-flow,
and verify models only. We focus on the verification of implementations of peri-
odic programs, and do not abstract data- and control-flow.

Recently, Kidd et al. [12] have applied sequentialization as well to verify
periodic programs. Their key idea is to share a single stack between all tasks and
model preemptions by function calls. They do not report on an implementation.
In contrast, we use a sequentialization based on rounds, and present an efficient
implementation and empirical evaluation. They also use the idea that a periodic
program is equivalent to unbounded repetition of its hyper-period. However, we
show that this is unsound in general and provide sufficient conditions under
which this is sound.

In the context of concurrent software verification, several flavors of sequen-
tialization have been proposed and evaluated (e.g., [14, 21, 11, 10]). Our proce-
dure is closest to the LR [14] style. However, it differs from LR significantly,
and provides a crucial advantage over LR for periodic programs [7] because it
only considers schedules that respect the priorities. The key difference are in the
notion of rounds, and the number of rounds required by the two techniques.

The sequentialization in this paper extends and advances the one presented
in our earlier work [7]. We already pointed out the syntactic differences in Sect. 3.
Semantically, compSeq is more complete than monoSeq. The reason is that
compSeq imposes stronger restrictions on possible preemptions between jobs.
Consider again our taskset from Example 1. compSeq ensures that J(τ1, 0) can-
not be preempted by either J(τ2, 2) or J(τ2, 3). However, monoSeq only ensures
that J(τ1, 0) is preempted by at most two jobs of τ2. It allows, for example, an
execution in which J(τ1, 0) is preempted by both J(τ2, 2) and J(τ2, 3). Indeed,
we encountered a false warning eliminated by compSeq during our experiments
(see Sec. 7). The ordering used by compSeq enables us to prune out infeasible
executions and check for assertions violations more eagerly than in monoSeq.
The early check of assertions leads to faster run-times, because CBMC creates
straight-line programs up to the assertion, which means that they are now shorter
in length.



A further advancement over [7] is harmonicSeq – a specialized version of
sequentialization for harmonic programs, which extends naturally to multiple
hyper-periods, allowing the reuse of variables across different hyper-periods.

7 Experiments

We have developed a tool called RekH which implements harmonicSeq and
supports multiple hyper-periods. RekH is built on the same framework as Rek.
CIL [19] is used to parse and transform C programs and CBMC [8] is the
sequential verifier. RekH takes as input C programs annotated with entry points
of each task, their periods, worst case execution times, arrival times, and the
time bound W. The output is a sequential C program S that is then verified
by CBMC. Our implementation of harmonicSeq includes support for locks, in
exactly the same way as in monoSeq, as described in [7].

To compare betweenmonoSeq and harmonicSeq, we have evaluatedRekH

on a set of benchmarks from prior work, and have conducted an additional case
study by building and verifying a robotics controller simulating a Turing ma-
chine. In the rest of this section, we report on this experience. The tool, the
experiments, and additional information about the case study, including the
video of the robot and explanation of the properties verified, are available at:
http://www.andrew.cmu.edu/user/arieg/Rek. All experiments have been per-
formed on a AMD Opteron 2.3 GHz processor, 94 GB of main memory running
Linux.

NXTway-GS controller. The NXTway-GS controller, nxt for short, runs on
nxtOSEK [1] – a real-time operating system ported to the LEGO Mindstorms
platform. nxtOSEK supports programs written in C with periodic tasks and
priority ceiling locks. It is the target for Embedded Coder Robot NXT – a
Model-Based Design environment for using Simulink models with LEGO robots.

The basic version of the controller has 3 periodic tasks: a balancer, with
period of 4ms, that keeps the robot upright and monitors the bluetooth link for
user commands, an obstacle, with a period of 48ms, that monitors a sonar sensor
for obstacles, and a 96ms background task that prints debug information on an
LCD screen. Note that this system is harmonic. (In [7], we used a non-harmonic
variant of the system). Arrival time of all tasks were set to 0 – to model the
semantics of the OSEK operating system.

We verified several versions of this controller. All of the properties (i.e., as-
sertions) verified were in the high-frequency balancer task. The balancer goes
through 3 modes of execution: INIT, CALIBRATE, and CONTROL. In INIT
mode all variables are initialized, and in CALIBRATE a gyroscope is calibrated.
After that, balancer goes to CONTROL mode in which it iteratively reads the
bluetooth link, reads the gyroscope, and sends commands to the two motors on
the robot’s wheels.

The results for analyzing a single hyper-period (96ms) are shown in the
top part of Table 1. Experiments nxt.ok1 (nxt.bug1) check that the balancer



Table 1. Experimental results. OL and SL = # lines of code in the original C program
and the generated sequentialization S, respectively; GL = size of the GOTO program
produced by CBMC; Var and Clause = # variables and clauses in the SAT instance,
respectively; S = verification result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for
timeout (12,000s); Time = verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
OL SL GL Var Clause (sec) SL GL Var Clause (sec)

1 hyper-period

nxt.ok1 396 2,158 12K 128K 399K Y 21.22 2,378 17K 110K 354K Y 4.22
nxt.bug1 398 2,158 12K 128K 399K N 6.22 2,378 17K 110K 354K N 4.36
nxt.ok2 388 2,215 12K 132K 410K Y 11.16 2,432 18K 111K 356K Y 4.69
nxt.bug2 405 2,389 15K 135K 422K N 8.66 2,704 23K 114K 372K N 5.81
nxt.ok3 405 2,389 15K 135K 425K Y 14.46 2,704 23K 109K 358K Y 5.71
aso.bug1 421 2,557 17K 167K 541K N 12.05 3,094 29K 173K 568K N 6.67
aso.bug2 421 2,627 17K 167K 539K N 11.61 3,184 29K 165K 549K N 6.71
aso.ok1 418 2,561 17K 164K 525K Y 22.20 3,098 28K 147K 486K Y 6.51
aso.bug3 445 3,118 24K 350K 1,117K N 22.15 4,131 41K 341K 1,108K Y 19.27
aso.bug4 444 3,105 23K 325K 1,027K N 16.32 4,118 40K 307K 1,001K N 10.83
aso.ok2 443 3,106 23K 326K 1,035K Y 601.59 4,119 40K 311K 1,006K Y 21.94

4 hyper-periods

nxt.ok1 396 14,014 57K 1,825K 5,816K Y 1,305 2,393 71K 471K 1,610K Y 70.59
nxt.bug1 398 14,014 57K 1,825K 5,816K N 1,406 2,393 71K 471K 1,610K N 73.27
nxt.ok2 388 14,156 60K 1,850K 5,849K Y 1,382 2,447 73K 475K 1,618K Y 67.08
nxt.bug2 405 14,573 71K 1,887K 5,978K N 362 2,722 94K 485K 1,667K N 77.39
nxt.ok3 405 14,573 71K 1,884K 5,964K U — 2,722 93K 466K 1,723K Y 101.01
aso.bug1 421 14,942 81K 2,359K 7,699K N 894 3,115 115K 726K 2,741K N 143.52
aso.bug2 421 15,097 81K 2,359K 7,689K N 773 3,205 116K 692K 2,438K N 107.66
aso.ok1 418 14,946 80K 2,331K 7,590K U — 3,119 114K 620K 2,188K Y 110.21
aso.bug3 445 16,024 113K 5,016K 16,162K N 9,034 4,161 167K 1,406K 4,774K Y 215.02
aso.bug4 444 16,055 108K 4,729K 15,141K N 6,016 4,148 161K 1,271K 4,295K N 168.22
aso.ok2 443 16,056 109K 4,734K 15,159K U — 4,149 162K 1,289K 4,360K Y 200.25

is in a correct (respectively, incorrect) mode at the end of the time bound.
Experiment nxt.ok2 checks that the balancer is always in one of its defined
modes. Experiment nxt.bug3 checks that whenever balancer detects an obstacle,
the balancer responds by moving the robot. We found that since the shared
variables are not protected by a lock there is a race condition that causes the
balancer to miss a change in the state of obstacle for one period. Experiment
nxt.ok3 is the version of the controller where the race condition has been resolved
using locks. In all cases, harmonicSeq dramatically outperforms monoSeq.
Furthermore, harmonicSeq declares the program safe for aso.bug3. Indeed, the
program is safe under zero-phasing of OSEK. Note that it was flagged unsafe by
monoSeq, a false warning, because monoSeq assumes arbitrary phasing.

We have also experimented with analyzing multiple hyper-periods. In the
bottom part of Table 1, we show the result for 4 hyper-periods. Results for hyper-
periods 2 and 3 are similar. In the case of aso.bug3 the performance improves by a
factor of 40x. Furthermore, harmonicSeq solves all cases, while monoSeq times



out in 3 instances. We conclude that harmonicSeq scales better to multiple
hyper-periods than monoSeq does.

Turing Machine Case Study. We built a robot simulating the Turing Machine
(TM) using LEGO Mindstorms. While our robot is a toy, it is quite similar to
many industrial robots such as ones used for metal stamping. Physically, the
robot consists of a conveyer belt (the tape) and levers (for reading and writing
the tape). The tape is built out of 16 L-shaped black bricks. Each brick represents
a bit. A bit is flipped by the write lever. The light sensor, which is attached to
the read head, approaches the tape and determines the value of the current bit
by emitting green light and measuring the intensity of its reflection. Due to our
design of the TM, it is possible for the write lever and the read head to collide. It
is the controller’s responsibility to avoid this collision (i.e., read head and write
lever should never approach the tape together). The tape is placed on a rail and
is moved left and right by the tape motor.

The implementation has four periodic tasks – Controller, TapeMover, Reader,
and Writer in order of ascending priority. The Controller task has 500ms pe-
riod and 440ms WCET. The other three tasks each have 250ms period and
10ms WCET respectively. The Controller task looks up a transition table, de-
termines next operations to execute, and gives commands to the other tasks. The
TapeMover task moves the tape to the left (or right). The Reader task moves
the read head back and forth by rotating the read motor and reads the current
bit of the tape. The Writer task rotates the write lever to flip a bit.

We model the motors and the color sensor to abstract away unnecessary
complexity and verify properties of interest as follows:

– Motor. The speed of a motor is only accessed through the API functions.
Motor’s counter is modeled non-deterministically but respects the current
speed, i.e., if the speed is positive, consecutive samplings of the counter
increase monotonically. Effectively, we abstract away the acceleration.

– Color sensor. The model of the color sensor returns a non-deterministic in-
tensity value. Additionally, it maintains two variables for the mode of the sen-
sor – one for the current mode and one for the requested one. This reflects the
actual API of the sensor. The API function set nxtcolorsensor() is used
to request to switch the mode. The actual transition takes relatively long
time (around 440ms) and is triggered by a call to bg nxtcolorsensor().

During the case study, we developed and verified the code together. We found
RekH to be scalable enough for the task and useful to find many subtle errors
in early development stages. Some of the more interesting properties are sum-
marized below:

– ctm.ok1: When a bit is read, all the motors are stopped to avoid mismea-
surement. We added assert(R speed==0 && W speed==0 && T speed==0)

in the Reader task to specify this property, where R speed, W speed, and
T speed represent the speed of read, write, and tape motor respectively.



Table 2. Experimental results of concurrent Turing Machine. H = # of hyper-periods,
OL and SL = # lines of code in the original C program and the generated sequen-
tialization S, respectively; GL = size of the GOTO program produced by CBMC; Var
and Clause = # variables and clauses in the SAT instance, respectively; S = verifica-
tion result – ‘Y’ for SAFE, ‘N’ for UNSAFE, and ‘U’ for timeout (85,000s); Time =
verification time in sec.

monoSeq harmonicSeq

Name SAT Size S Time SAT Size S Time
H OL SL GL Var Clause (sec) SL GL Var Clause (sec)

ctm.ok1 4 613 13K 121K 2,737K 8,774K Y 44,781 7K 111K 1,063K 3,497K Y 93.39
ctm.ok2 4 610 13K 119K 2,728K 8,738K Y 21,804 7K 109K 1,055K 3,467K Y 87.60
ctm.bug2 4 611 13K 118K 2,707K 8,674K N 2,281 7K 108K 1,047K 3,441K N 86.18
ctm.ok3 6 612 20K 222K 6,276K 20,163K U — 7K 171K 1,667K 5,566K Y 243.76
ctm.bug3 6 612 20K 214K 5,914K 19,044K N 84,625 7K 165K 1,609K 5,383K N 248.65
ctm.ok4 8 613 29K 333K 10,390K 33,550K U — 7K 222K 2,178K 7,417K Y 534.38

– ctm.ok2: When a bit is read, the sensor is on green-light mode. We added
assert(get nxtcolorsensor mode(CSENSOR) == GREEN) in the Reader task
to specify this property. When we request to switch to green-light mode in
the Reader task, it sets a flag and waits until the Controller task runs the
background process to make the transition and clear the flag.

– ctm.bug2: In this case, we have the same property as ctm.ok2. In this imple-
mentation, however, the Reader task does not wait for the Controller task
to clear the flag. Since the Reader task has higher priority, the Controller
task is not able to preempt and run the background process.

– ctm.ok3: When the writer flips a bit, the tape motor is stopped and the
read head is at the safe position to avoid a collision with the read head. We
added assert(T speed==0 && get count(RMOTOR)<=0) in the Writer task
to express this property.

– ctm.bug3: We have assumed that the read head is stopped as soon as it ar-
rives at the safe position (get count(RMOTOR)<=0), expressed by assert(T speed==0

&& R speed==0). However, the property does not hold of our implementation
due to the sampling granularity.

– ctm.ok4: We verified that the writer and read motors are stopped when the
tape moves by checking assert(R speed == 0 && W speed == 0) in the
TapeMover task.

Table 2 shows the experimental results of the Turing machine. For each case,
the minimum hyper-period is selected for the analysis to reach the assertion in
the program. For instance, ctm.ok4 case requires at least 8 hyper-periods to
check the assertion. In all cases, compSeq dramatically outperforms monoSeq.
In one case - ctm.ok1 - the performance improves by a factor of 480x.

8 Conclusion

In this paper, we deal with the problem of verifying logical properties, such as
user specified assertions, race conditions, and API usage rules, of Real-Time



Embedded Systems (RTESs). We present a technique for time-bounded verifica-
tion of RTES system implemented by a periodic program in C. The novelty of
the technique is in compositional sequentialization that takes into account inter-
and intra-hyper-period temporal separation between tasks. Tasks in different
hyper-periods are sequentialized separately, as well as tasks that can never in-
terleave due to their arrival and response times. This leads to a dramatic increase
in scalability of the sequentialization approach while making it more complete
(i.e., reducing false positives). We have implemented the approach and illustrate
it on a benchmark from [7] and on an additional case study of a robotics system.

Acknowledgment.This material is based upon work funded and supported
by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a fed-
erally funded research and development center.2.

References

1. nxtOSEK/JSP Open Source Platform for LEGO MINDSTORMS NXT.
http://lejos-osek.sf.net.

2. RTEMS Operating System. http://www.rtems.com.
3. VxWorks Programmer’s Guide.
4. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer

Science (TCS), 126(2), 1994.
5. V. A. Braberman and M. Felder. Verification of Real-Time Designs: Combining

Scheduling Theory with Automatic Formal Verification. In Proc. of FSE, 1999.
6. CBMC website. http://www.cprover.org/cbmc.
7. S. Chaki, A. Gurfinkel, and O. Strichman. Time-Bounded Analysis of Real-Time

Systems. In Proc. of FMCAD, 2011.
8. E. Clarke, D. Kroening, and F. Lerda. A Tool for Checking ANSI-C Programs. In

K. Jensen and A. Podelski, editors, Proc. of TACAS, volume 2988, 2004.
9. V. D’Silva, D. Kroening, and G. Weissenbacher. A Survey of Automated Tech-

niques for Formal Software Verification. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 27(7), 2008.

10. M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-Bounded Scheduling. In Proc. of
POPL, 2011.

11. N. Ghafari, A. J. Hu, and Z. Rakamaric. Context-Bounded Translations for Con-
current Software: An Empirical Evaluation. In Proc. of SPIN, 2010.

12. N. Kidd, S. Jagannathan, and J. Vitek. One Stack to Run Them All - Reducing
Concurrent Analysis to Sequential Analysis under Priority Scheduling. In Proc. of
SPIN, 2010.

13. T.-W. Kuo and A. K. Mok. Load Adjustment in Adaptive Real-Time Systems. In
Proceedings of the Real-Time Systems Symposium (RTSS ’91), 1991.

14. A. Lal and T. W. Reps. Reducing Concurrent Analysis Under a Context Bound
to Sequential Analysis. In Proc. of CAV, 2008.

2
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT. This material has been approved for public release and unlimited distribution.
(DM-0000076)



15. F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for
discrete-time systems. Theoretical Computer Science (TCS), 353(1-3), 2006.

16. K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer (STTT), 1(1-2), 1997.

17. C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment. Journal of the ACM (JACM), 20(1), 1973.

18. D. C. Locke, D. R. Vogel, L. Lucas, and J. B. Goodenough. Generic Avionics Soft-
ware Specification. Technical report CMU/SEI-90-TR-8-ESD-TR-90-209, Software
Engineering Institute, Carnegie Mellon University, 1990.

19. G. C. Necula, S. McPeak, S. P. Rahul, andW.Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C Programs. In Proc. of CC, 2002.

20. A. Rowe, K. Lakshmanan, H. Zhu, and R. Rajkumar. Rate-harmonized scheduling
and its applicability to energy management. IEEE Trans. Industrial Informatics,
6(3):265–275, 2010.

21. S. L. Torre, P. Madhusudan, and G. Parlato. Reducing Context-Bounded Concur-
rent Reachability to Sequential Reachability. In Proc. of CAV, 2009.



A Proof of Lemma 1

Statement of the lemma:

j1 ⊏ j2 ⇐⇒ j1 ⊳ j2 ∨ j1 ↑ j2

Proof. Recall the definitions of ⊳, ↑ and ⊏:

j1 ⊳ j2 ⇐⇒ (π(j1) ≤ π(j2) ∧D(j1) ≤ A(j2))
︸ ︷︷ ︸

X1

∨ (π(j1) > π(j2) ∧A(j1) ≤ A(j2))
︸ ︷︷ ︸

X2

j1 ↑ j2 ⇐⇒ π(j1) < π(j2) ∧A(j1) < A(j2) < D(j1)
︸ ︷︷ ︸

Y

j1 ⊏ j2 ⇐⇒ A(j1) < A(j2)
︸ ︷︷ ︸

Z1

∨ (A(j1) = A(j2) ∧ π(j1) > π(j2))
︸ ︷︷ ︸

Z2

The forward implication follows from:

Z1 ∧ π(j1) = π(j2) =⇒ X1 Z1 ∧ π(j1) > π(j2) =⇒ X2

Z1 ∧ π(j1) < π(j2) ∧D(j1) ≤ A(j2) =⇒ X1

Z1 ∧ π(j1) < π(j2) ∧D(j1) > A(j2) =⇒ Y
Z2 =⇒ X2

The backward implication follows from:

X1 =⇒ Z1 X2 ∧A(j1) < A(j2) =⇒ Z1

Y =⇒ Z1 X2 ∧A(j1) = A(j2) =⇒ Z2

⊓⊔

B Proof of Theorem 1

Proof. To prove that job ordering by ⊏ is sound, recall that monoSeq orders
jobs by increasing priority, and jobs of same priority are ordered by increasing
arrival time. Thus, the only case in which ordering by monoSeq differs from ⊏

is when j2 ⊏ j1 but π(j2) > π(j1). However, this implies that j2 ⊳ j1, which
implies that in all legal executions, j2 completes before j1 begins. In terms of job
scheduling, this means that end[j2] < start[j1]. Therefore, ordering j2 before j1
in S does not eliminate any legal execution.

To prove that eager-check-assumptions is sound, we show that after line 22
is executed in runJob(j), the variable g[rnd] is not accessed subsequently in S.
Note that due to line 20, we know that at line 22, rnd = end[j]. Therefore, it
suffices to show that for every job j′ such that j ⊏ j′, the execution of runJob(j′)
does not access g[end[j]]. We show that after the execution of scheduleJobs(),
the following holds:

∀j, j′ � j ⊏ j′ =⇒ end[j′] < end[j] ∨ end[j] < start[j′] .



Since j ⊏ j′, we consider two cases. First, let j ⊳ j′. In this case, we have end[j] <
start[j′] from line 13 of scheduleJobs(). Otherwise, let j ↑ j′. By definition
of ↑, we know that A(j′) < D(j). Therefore, by line 14 of scheduleJobs(), we
have end[j′] < end[j].

To prove that eager-check-assertions is sound, let j and j′ be jobs such
that (j′ = j ∨ j′ ↑ j) ∧ ∀j′′ 6= j � j′ ↑ j′′ =⇒ j′′ ⊏ j. Consider an
execution e of S and let r be the value of variable rnd when the value of
localAssert[j′] was set for the last time before assert(localAssert[j′]) is executed in
runJob(j). Note that the value of localAssert[j] depends only on g[r]. We show
that after assert(localAssert[j′]) is executed in runJob(j), the variable g[r] is
never accessed in the future. Thus, the value of localAssert[j′] when executing
assert(localAssert[j′]) in runJob(j) is its final value in the execution e.

First, note that r ≤ end[j′]. Next, by the construction of S, we know that
if runJob(j′′) is executed after runJob(j), then j ⊏ j′′. Now, due to the con-
struction of the set X at line 23 of runJob(j), for every job j′′ such that
j ⊏ j′′, we have j′ ⊳ j′′. Therefore, by line 13 of scheduleJobs(), we have
r ≤ end[j′] < start[j′′]. Also, by construction of S, whenever runJob(j′′)
accesses g[rnd], we know that rnd ≥ start[j′′] > r. Hence the execution of
runJob(j′′) does not access g[r]. This completes our proof. ⊓⊔


