Model Checking with
Multi-Threaded IC3

Portfolios
Sagar Chaki, Derrick Karimi AT

LT
January 19, 2016

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

== Software Engineering Institute | Carnegie Mellon University © 2016 Carnegie Mellon University

Approved for Public Release; Distribution is Unlimited



Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003195

Multi-Threaded IC3 Portfolios
January 19, 2016

== Software Engineering Institute | Carnegie Mellon University o 2016 et ellonUnersty

istribution is Unlimited



Overview

IC3/PDR recent algorithm for hardware model checking
« Showing lot of promise
« But most focus on seguential implementations

We parallelized it by having several IC3 copies sharing lemmas
« Showed speedup, but runtime is unpredictable
- Sensitive to “lemma-discovery order” between copies

Investigated runtime distribution of portfolios of parallel IC3 solvers

« Leveraged observation that runtime of each parallel IC3
follows the “Weibull” probability distribution

« Used statistical analysis to compute good portfolio sizes

=== Software Engineering Institute ‘ Carnegie Mellon University



Outline

Sequential IC3

Parallel IC3 — Three Variants
« Synchronous, Asynchronous, Proof-Checking

Runtime Variability and Weibull Distribution

Portfolio and Statistical Analysis

Experimental Results

Multi-Threaded IC3 Portfolios

=== Software Engineering Institute Carnegie Mellon University



Sequential IC3

Solves the reachability problem in finite state machines

Input : Problem (I, T, S)
« [ = set of initial states
T = transition relation
« S = set of safe states

Output : T if =S is unreachable from [ via T, L otherwise

« T=Y(I) = set of states reachable from I via T in at most i
steps

Symbolic: Everything encoded as clauses/minterms over
propositional variables

=== Software Engineering Institute ‘ Carnegie Mellon University



Sequential IC3

Key Invariant

N N -
\ )
f

U F[j] = overapprox. of set of states reachable from I in i steps or less

K-1

j=i

K-1
Formally, U Fl[j1=f@() 2 T=Y()
j=i

Multi-Threaded IC3 Portfolios

%% Software Engineering Institute ‘ Carnegie Mellon University



Sequential IC3

Variables:
(I,T,S) - input problem
F[O K — 1] = array of frames

U FIjl = £() 2 T=(D)

Fli] = set of clauses

bug boolean flag to indicate if a bug has been found

K = sizeof F

bool 1C3() {

check if =S reachable in 0 or 1 steps;

K = 3; F[O] = I; F[l] p— F[Z] = @; bug ::J_;

while(T)
strengthen();
if (bug) return L;
propagate();
if(3i € [1,K — 2].F[i]
FIK] = ;K = K + 1;

= Q) return T;

}

Corresponds to reference
implementation we used:
https://github.com/arbrad/IC3ref

%% Software Engineering Institute ‘ Carnegie Mellon University


https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref

Sequential IC3

Variables:
(I,T,S) - input problem

U FIjl = £() 2 T=(D)

F[O K — 1] = array of frames F|i] = set of clauses K = size of F

bug boolean flag to indicate if a bug has been found

bool IC3() {
check if =S reachable in 0 or 1 steps;
K = 3;F|0] :=I;F[1] = F[2] == @; bug =1;
while(T)
strengthen();
if (bug) return L;
propagate();
if 3i € [1,K — 2].F[i] = @) return T;
FIK] =0;K =K+ 1;

strengthen() = adds new
clauses to F[0..K — 1] till
1t finds either:

(1) a real CEX => sets
bug =T and returns;

(i) f(K—Z)/\—|S =1=>
returns.

Uses SAT solver heavily.

%% Software Engineering Institute ‘ Carnegie Mellon University



Sequential IC3

Variables:
(I,T,S) - input problem

U FIjl = £() 2 T=(D)

F[O K — 1] = array of frames F|i] = set of clauses K = size of F

bug boolean flag to indicate if a bug has been found

bool IC3() {
check if =S reachable in 0 or 1 steps;
K = 3;F|0] :=I;F[1] = F[2] == @; bug =1;
while(T)
strengthen();
if (bug) return L;
propagate();
if 3i € [1,K — 2].F[i] = @) return T;
FIK] =0;K =K+ 1;

propagate() = Vi € [0,K — 2]
pushes inductive clauses
in Fli] to F[i+ 1];

clause a € F|i] 1s
inductive 1if:
fAOAT = o

Uses SAT solver heavily.

%% Software Engineering Institute ‘ Carnegie Mellon University



SAT Solver Pool

- -

SAT Solver Goal: Prevent the SAT
Pool for F[i] Slvry Slvr, ... Slvr, solver from becoming a
bottleneck.

SAT Solver Pool API:

 An IC3 requests a SAT solver.

* If oneis available, it is removed from the pool and given to the IC3.

* The IC3 uses the SAT solver and then returns it.

* Itisadded back to the pool.

* New lemmas learned by this solver are added to everyone else.

e If asolveris currently lent out, the new lemmas are added to it when it is returned.

January 19, 2016

== Software Engineering Institute | Carnegie Mellon University o 2016 et ellonUnersty




Parallel IC3: IC3Sync

n = #of parallel IC3 solvers, each using its own frames
Vi = |1,n].F;[0..K — 1] K = size of each F;
bug = boolean flag to indicate if a bug has been found

bool IC3Sync() { (a) Each copy has its own frames.
check if =S reachable in 0 or 1 steps; (b) Use common SAT solver pool
Vi € [1,n]. F;[0] :== [; F;[1] == F;[2] = ©; to share information.
K =3 bug — | - (c) Runs asynchronously most of
o ’ the time.
Whlle(T) (d) Only synchronization is for
{ strengthen,( );propagate;( ); the termination check.

|-l
strengthen,( );propogate,( ,, |
if (bug) return L;

Synchronous Parallel
Execution — Terminates

if(EIi € 1 K — 2] Vj E [1'n]'F}'[i] — Q)) return T; only when all components
Vi € [1,n]. F;|K] = 0; terminate
K=K+ 1;
} Proof of
correctness

in paper

%% Software Engineering Institute | Carnegie Mellon University



Parallel IC3: IC3ASync

n = #of parallel IC3 solvers, each using its own frames
Vi = |1,n].F;[0..K — 1], K; = size of F;
bug = boolean flag to indicate if a bug has been found

bool IC3ASync() { void IC3Copy;( ) {
check if =S reachable in 0 or 1 steps; = Fil0] = I, F;[1] == F;[2] == §; K; = 3;
bug =1 Whlle(T)
IC3Copy,( );0 -0 IC3Copy,,( ); strengthen;( );
return bug? 1: T; if (bug) return;
} propogate;( );
if (3i € [1,K; — 2].Vj € [1,n]. F;[i] = 0)
return;
FilK] = 0;K; = K; + 1;
(a) Each copy runs completely
asynchronously. q
(b) Termination check distributed over sgrehemneus PaEll
multiple copies. Execution — Terminates as Proof of
(c) Use common SAT solver pool to share soon as any one correctness
information. component terminates in paper

Multi-Threaded IC3 Portfolios
anu ,

%% Software Engineering Institute ‘ Carnegie Mellon University



Parallel IC3: IC3Proof

n = #of parallel IC3 solvers, each using its own frames
Vi = |1,n].F;[0..K — 1], K; = size of F;
bug,safe = boolean flag to indicate bug or safety proof

bool IC3Proof () { void propagateProof;( ) {
check if =S reachable in 0 or 1 steps; (a) propagate inductive lemmas
bug =1 Safe =1 forward;

. : (b) if a frame becomes empty,
[C3PrCopy;( Jio -0 IC3PTCOpY,( ); check if the lemmas at that level
return bug? 1: T;

over all the copies form an
} inductive invariant

. (c) if so set flag = T and return
vgl[cé ]I CEI;TIg O[Iﬁh(_ 13 [{2] — 0K = 3 (d) otherwise, return after all lemmas
At e have been pushed forward
while(T) )
strengthen;( );
if (bug) return;
propagateProof;( ); Details and Proof of correctness in paper
if (safe)return;
Fi[K;] == 6; K; == K; + 1; Refer to IC3Sync, IC3Async, and IC3Proof
) collectively as ParIC3

Multi-Threaded IC3 Portfolios
anu

=== Software Engineering Institute Carnegie Mellon University



Density

CDF

Unpredictability in Runtime of Parallel IC3

0.0010

0.0000

04 06 08 1.0

0.2

0.0

500

I
1000

Data

1500

1
2000

Empirical and theoretical CDFs

=

=]

500

I
1000

I
1500

I
2000

Density

CDF

0.05 0.10 0.15

0.00

1.0

04 06 08

0.0 02

™y

10 15 20 25

Data

Empirical and theoretical CDFs

| | | |
10 15 20 25

Density

CDF

0.02 0.04

0.00

1.0

04 06 08

00 02

10 20 30 40 50

Data

Empirical and theoretical CDFs

I I I I I
10 20 30 40 50

Matches Weibull Distribution = Minimum of iid random

variables under Extreme Value Theorem
Intuition: IC3 copies “compete” and the fastest one “wins”

readed IC3 Portfolios
19, 2016
arnegie Mellon University

ion Statement A ]
Approved for Public Release; Distribution is Unlimited



Goodness of Fit to Welbull — IC3Sync

1IC3sYNC (4)

(a) Used a cluster of 11 machines,
each with 16 cores@2.4GHz and
[48,190]GB of RAM.

(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)

(c) Solved each 3000 times

(d) Collected solving time

(e) Extracted Weibull parameters
-- k : shape

-- A : scale

(f) Compared predicated mean and
variance from k and A with
observed from the actual runtimes

Example|| & | A T o, o
63286 1.O711119(1015.1015] 280,274
inteld26 ||2.71149.0| 43.6,44.2 117.3,14.6
65273 |[3.80126.1 ] 23.6,23.6 |6.93.6.57
intelds7 |[6.58]16.0] 14.9,15.1 |2.66,2.11
inteldsd ||7.82124.3 | 22.5.23.0 |3.46,2.94
65215 |2.38(7.69|6.82.7.03 [3.05,2.34
65216 |[1.95/35.1(131.1.31.0|16.6.16.9
oski3ubli|[5.98]54.9| 50.9,51.4 19.90.7.90
oskidub3i||5.71|52.4 | 485.5,48.9 |19.84_8.00
oskidub5i|[5.058/66.8 | 61.4.61.9|113.8,11.6
SAFE ||5.00] 246 | 224,224 [62.1,60.2
BUG 1.22(43.4 | 39.7.40.0 (10.6,9.37
ALL 1.61( 145 | 131.132 (36.4.34.7

=== Software Engineering Institute

‘ Carnegie Mellon University



mailto:cores@2.4GHz

Goodness of Fit to Welbull — IC3ASync

(a) Cluster of 11 machines, each
with 16 cores@?2.4GHz and
[48,190]GB of RAM.

(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)

(c) Solved each 3000 times

(d) Collected solving time

(e) Extracted Weibull parameters
-- k : shape

-- A : scale

(f) Compared predicated mean and
variance from k and A with
observed from the actual runtimes

IC3ASYNC (4)
Example | & | A T T T
63286 1.44| 990 | 902,903 | 230,220
inteld26 || 3.70 :_-I]' 2145.3,46.2(13.6,10.1
68273 1.11]2. 21.3,21.4(5.85,5.36
inteld57 ||7.31]17. Iﬂ.] A6.12.60,2.46
intel54 ||5.69)26. l 24.6,24.8(3.38,2.84
6s215 1.7116.75|6.17.6.21|1.49.1.34
65216 |[3.56(|27.5|24.8,24.9|7.74,6.97
oski3ubli||7.02|52.3|458.9,49.2(58.20,6.71
oski3ub3i||5.51|52.2|48.2.48.6|10.1,8.5
oski3ub5i||4.94|67.2|161.6,62.0(14.2,12.4
SAFE ||5.65] 221 202,202 |51.1.48.3
BUG 5.15|41.2(37.9,38.2|8.36,7.20
ALL 5.40| 131 120,120 |29.7,27.7

Multi-Threaded IC3 Portfolios

%% Software Engineering Institute ‘ Carnegie Mellon University



mailto:cores@2.4GHz

Goodness of Fit to Welbull = IC3Proof

(a) Cluster of 11 machines, each
with 16 cores@?2.4GHz and
[48,190]GB of RAM.

(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)

(c) Solved each 3000 times

(d) Collected solving time

(e) Extracted Weibull parameters
-- k : shape

-- A : scale

(f) Compared predicated mean and
variance from k and A with
observed from the actual runtimes

[C3PROOF (4)
Example | & | A | p.p” a, o
65286 1.35| 950 51’}2.-&1{}9 232,228
intell26 (3.70(50.1 46.1113.6,10.3
65273 1.17123.3 9‘1 _} 21.3|5.73.5.20
inteld57 |7.52|117.8|116.7.16.9(2.63.2.07
intelds4d |9.26126.124.7.24.8(3.20,2.92
65215 1.7216.38|5.84,.5.90(1.41,1.21
65216 |[2.78|28.1125.0,25.1(9.74.9.05
oskidubli|4.753(54.8(50.2,50.58|111.9,9.53
oski3ub3i|5.66(52.2(48.2,48.5|9.87,8.39
oski3ub5i|(4.93|66.2|60.7.61.1(|14.0,12
SAFE |5.50] 219 200,200 [(51.4.49.7
BUG 1.58|141.5|38.0,38.3(9.42 8.07
ALL 5.19(130( 119,119 |30.4.25.9

%% Software Engineering Institute ‘ Carnegie Mellon University



mailto:cores@2.4GHz

Portfolio of IC3Pars

Run several IC3Pars in parallel

« Completely independent
- no data sharing among different IC3Pars
- data shared only between IC3 copies within the same IC3Par

« Stop as soon as one IC3Par completes

Intuition: With a large enough portfolio, we can get lucky

« But how large should the portfolio be?

- e.g., if we want to beat the average performance of a single
IC3Par solver with 0.99999 probability?

- can statistical analysis provide an answer?
* Yes, answer=20

%% Software Engineering Institute | Carnegie Mellon University



Statistical Analysis of ParlC3 Portfolio

Consider portfolio P, ..., B,, of m ParlC3s working on a problem
Y; = time taken by the i-th solver ~ WEI(k, 1)

Let t* = E[Y;] = expected solve time by single IC3Par = AI'(1 + %)
Y = min(Yy, ..., ¥;,) = solve time by portfolio ~ WEI (k, il)
mk

Let p(m) = P[Y < t*] =probability that portfolio does better than
expected solving time of a single IC3Par

Result: p(m) > 1 —e ¢ where y = 0.57721 is the Euler-
Mascheroni constant.

Plugging in1 — e ¢V = 0.99999 we get m = 20
« A portfolio of 20 IC3Pars will beat the average IC3Par in a
single attempt with probability 0.99999

=== Software Engineering Institute ‘ Carnegie Mellon University



Results: Parallel PDR Speedup

[C3SYNC IC3ASYNC | IC3PROOF I[C3RND

B B [|{Mean|Max|Mean |Max |Mean|Max | Mean | Max
HWCSAFE| 31 | 1.30 [5.61| 1.58 |5.47| 1.60 [4.08| 1.17 [4.64
HWCBUG | 14 | 2.49 [18.7| 14.3 | 151 | 25.1 | 309 | 1.07 [ 1.49
TIPSAFE | 14 | 1.28 [4.50] 2.61 |11.1| 2.29 |12.8| 1.37 | 3.80
TIPBUG | 9 | 2.23 |5.35| 2.82 |7.32| 3.50 [12.1] 1.16 |2.17
SAFE 14 | 1.30 |5.61| 1.93 [11.1) 1.83 |12.8| 1.24 |4.64
BUG 23 | 238 |18.7| 9.58 [ 151 | 16.3 | 309 | 1.11 |2.17
ALL 67 | 1.67 |18.7| 4.74 [ 151 | 6.79 | 309 [ 1.19 |4.64

Portfolio of 20 IC3Par solvers. Each IC3Par Solver has 4 IC3 copies. SAT solver
pool size = 3. Experiments done on a 128 Core machine running at 2.67GHz
and 1TB RAM. IC3Proof performs best overall — looking for inductive
invariants intermittently pays off. IC3Rnd = Portfolio of 20 IC3s with a
randomized SAT solver. Some speedup but not as good as IC3Par.

%% Software Engineering Institute ‘ Carnegie Mellon University



Results: Parallel PDR vs IC3Par2010

IC3SYNC | IC3ASYNC | ICIPROOF IC3PARZ010

B E*||Mean|Max|Mean|Max|Mean|Max [ |87 || Mean| Max
HWCSAFE| 31 | 1.30 |5.61| 1.58 |5.47( 1.60 |4.08| 20 | 2.67 |14.40
HWCBUG | 14 | 2.49 |18.7| 14.3 | 151 | 25.1 [ 309 | 15 | 1.62 | 3.91
TIPSAFE | 14 | 1.28 |4.50( 2.61 |11.1| 2.29 |12.8] 14 | .89 | 1.82
TiIPBUG | 9 | 2,23 |[5.35| 2,82 |7.32| 350 121 7 | 1.32 | 1.67

SAFE 14 | 1.30 [5.61( 1.93 |11.1| 1.83 [12.8( 34 | 1.94 |14.40
BUG 23 [ 238 187|058 [ 151 | 16.3 | 309 22 [ 1.52 | 3.01
ALL 67 | 1.67 |18.7| 4.74 [ 151 | 6.79 | 309 || 56 T7 114.40

IC3Par2010 — parallel version of IC3 presented in original (VMCAI'11) IC3 paper
Parallel PDR better for unsafe cases —i.e., better at finding counterexamples
Difference is less clear for safe cases, each better in some cases

Multi-Threaded IC3 Portfolios

%% Software Engineering Institute ‘ Carnegie Mellon University



Concluding Thoughts

 We have some new ways of parallelizing 1C3

« Modest speedups with portfolios — improves over previous
attempts in some cases

« Statistical analysis gives numeric values to good portfolio size

« Connections with parallelizing other verification tools?
« we rely on data structures peculiar to IC3
* monotonicity and invariants maintained by the algorithm

« Can the statistical analysis be done for other portfolios?

Our result tied to a specific distribution (Weibull) of runtime
Does this hold for parallel SAT/SMT solvers?

If not, can we derive similar statistical results?

=== Software Engineering Institute Carnegie Mellon University



S 0 w\w a\ \.\.‘.\.!\\\W

e e )

Multi-Threaded IC3 Portfolios
il - . . . , . . January 19, 2016
== Software Engineering Institute | Carnegie Mellon University © 2016 Carmegie Mellon University
= e [ Distribution Statement A |
Approved for Public Release; Distribution is Unlimited




