
1
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Model Checking with
Multi-Threaded IC3
Portfolios

Sagar Chaki, Derrick Karimi

January 19, 2016

2
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0003195

3
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Overview

IC3/PDR recent algorithm for hardware model checking

• Showing lot of promise

• But most focus on sequential implementations

We parallelized it by having several IC3 copies sharing lemmas

• Showed speedup, but runtime is unpredictable

- Sensitive to “lemma-discovery order” between copies

Investigated runtime distribution of portfolios of parallel IC3 solvers

• Leveraged observation that runtime of each parallel IC3

follows the “Weibull” probability distribution

• Used statistical analysis to compute good portfolio sizes

4
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Outline

Sequential IC3

Parallel IC3 – Three Variants

• Synchronous, Asynchronous, Proof-Checking

Runtime Variability and Weibull Distribution

Portfolio and Statistical Analysis

Experimental Results

5
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Sequential IC3

Solves the reachability problem in finite state machines

Input : Problem (𝐼, 𝑇, 𝑆)

• 𝐼 = set of initial states

• 𝑇 = transition relation

• 𝑆 = set of safe states

Output : ⊤ if ¬𝑆 is unreachable from 𝐼 via 𝑇, ⊥ otherwise

• 𝑇≤𝑖(𝐼) = set of states reachable from 𝐼 via 𝑇 in at most 𝑖
steps

Symbolic: Everything encoded as clauses/minterms over
propositional variables

6
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Sequential IC3

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:
𝐼, 𝑇, 𝑆 – 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝐹 0. . 𝐾 − 1 = 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝐹 𝑖 = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝐾 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹
𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

𝐹[0] 𝐹[1] 𝐹[𝑖] 𝐹[𝐾 − 1] … …

 𝐹 𝑗 = 𝑜𝑣𝑒𝑟𝑎𝑝𝑝𝑟𝑜𝑥. 𝑜𝑓 𝑠𝑒𝑡 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑓𝑟𝑜𝑚 𝐼 𝑖𝑛 𝑖 𝑠𝑡𝑒𝑝𝑠 𝑜𝑟 𝑙𝑒𝑠𝑠

𝐾−1

𝑗=𝑖

 𝐹𝑜𝑟𝑚𝑎𝑙𝑙𝑦, 𝐹 𝑗 = 𝑓 𝑖 ⊇ 𝑇≤𝑖(𝐼)

𝐾−1

𝑗=𝑖

Key Invariant

One SAT Solver per frame
𝑓(𝑖) added as clauses to solver for 𝐹[𝑖]
Responsible for all queries involving 𝑓(𝑖)

𝐹 𝑖 = ∅ ⇒
𝑓(𝑖) is an
inductive
invariant

7
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Sequential IC3

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:
𝐼, 𝑇, 𝑆 – 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝐹 0. . 𝐾 − 1 = 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝐹 𝑖 = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝐾 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹

 𝐹 𝑗 = 𝑓(𝑖) ⊇ 𝑇≤𝑖(𝐼)

𝐾−1

𝑗=𝑖

𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

Corresponds to reference
implementation we used:

https://github.com/arbrad/IC3ref

𝑏𝑜𝑜𝑙 𝐼𝐶3() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 𝐾 ≔ 3; 𝐹 0 ≔ 𝐼; 𝐹 1 ≔ 𝐹 2 ≔ ∅; 𝑏𝑢𝑔 ≔⊥;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛();
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 ⊥;
 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒();
 𝑖𝑓 ∃𝑖 ∈ [1, 𝐾 − 2]. 𝐹 𝑖 = ∅ 𝑟𝑒𝑡𝑢𝑟𝑛 ⊤;
 𝐹 𝐾 ≔ ∅;𝐾 ≔ 𝐾 + 1;
}

https://github.com/arbrad/IC3ref
https://github.com/arbrad/IC3ref

8
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Sequential IC3

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛() = adds new
clauses to 𝐹 0. . 𝐾 − 1 till
it finds either:

(i) a real CEX => sets
𝑏𝑢𝑔 = ⊤ and returns;

(ii) 𝑓 𝐾 − 2 ∧ ¬𝑆 =⊥ =>
returns.

Uses SAT solver heavily.

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:
𝐼, 𝑇, 𝑆 – 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝐹 0. . 𝐾 − 1 = 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝐹 𝑖 = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝐾 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹

 𝐹 𝑗 = 𝑓(𝑖) ⊇ 𝑇≤𝑖(𝐼)

𝐾−1

𝑗=𝑖

𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

𝑏𝑜𝑜𝑙 𝐼𝐶3() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 𝐾 ≔ 3; 𝐹 0 ≔ 𝐼; 𝐹 1 ≔ 𝐹 2 ≔ ∅; 𝑏𝑢𝑔 ≔⊥;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛();
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 ⊥;
 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒();
 𝑖𝑓 ∃𝑖 ∈ [1, 𝐾 − 2]. 𝐹 𝑖 = ∅ 𝑟𝑒𝑡𝑢𝑟𝑛 ⊤;
 𝐹 𝐾 ≔ ∅;𝐾 ≔ 𝐾 + 1;
}

9
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Sequential IC3

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒() = ∀𝑖 ∈ 0, 𝐾 − 2
pushes inductive clauses
in 𝐹 𝑖 to 𝐹[𝑖 + 1];

clause 𝛼 ∈ 𝐹[𝑖] is
inductive if:

𝑓(𝑖) ∧ 𝑇 ⇒ 𝛼′

Uses SAT solver heavily.

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠:
𝐼, 𝑇, 𝑆 – 𝑖𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚
𝐹 0. . 𝐾 − 1 = 𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝐹 𝑖 = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑢𝑠𝑒𝑠 𝐾 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹

 𝐹 𝑗 = 𝑓(𝑖) ⊇ 𝑇≤𝑖(𝐼)

𝐾−1

𝑗=𝑖

𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

𝑏𝑜𝑜𝑙 𝐼𝐶3() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 𝐾 ≔ 3; 𝐹 0 ≔ 𝐼; 𝐹 1 ≔ 𝐹 2 ≔ ∅; 𝑏𝑢𝑔 ≔⊥;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛();
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 ⊥;
 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒();
 𝑖𝑓 ∃𝑖 ∈ [1, 𝐾 − 2]. 𝐹 𝑖 = ∅ 𝑟𝑒𝑡𝑢𝑟𝑛 ⊤;
 𝐹 𝐾 ≔ ∅;𝐾 ≔ 𝐾 + 1;
}

10
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

SAT Solver Pool

𝐹[0] 𝐹[1] 𝐹[𝑖] 𝐹[𝐾 − 1] … …

𝑆𝑙𝑣𝑟1 𝑆𝑙𝑣𝑟2 … 𝑆𝑙𝑣𝑟𝑘
SAT Solver

Pool for 𝐹[𝑖]

SAT Solver Pool API:
• An IC3 requests a SAT solver.
• If one is available, it is removed from the pool and given to the IC3.
• The IC3 uses the SAT solver and then returns it.
• It is added back to the pool.
• New lemmas learned by this solver are added to everyone else.
• If a solver is currently lent out, the new lemmas are added to it when it is returned.

Goal: Prevent the SAT
solver from becoming a
bottleneck.

11
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Parallel IC3: IC3Sync

𝑛 = #𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐼𝐶3 𝑠𝑜𝑙𝑣𝑒𝑟𝑠, 𝑒𝑎𝑐ℎ 𝑢𝑠𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑓𝑟𝑎𝑚𝑒𝑠
∀𝑖 = 1, 𝑛 . 𝐹𝑖 0. . 𝐾 − 1 𝐾 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝐹𝑖
𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

𝑏𝑜𝑜𝑙 𝐼𝐶3𝑆𝑦𝑛𝑐() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 ∀𝑖 ∈ 1, 𝑛 . 𝐹𝑖 0 ≔ 𝐼; 𝐹𝑖 1 ≔ 𝐹𝑖 2 ≔ ∅;
 𝐾 ≔ 3; 𝑏𝑢𝑔 ≔⊥;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 { 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛1 ; 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒1 ;
 ∥ ⋯ ∥
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛𝑛 ; 𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑒𝑛 ; }
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 ⊥;

 𝑖𝑓 ∃𝑖 ∈ 1, 𝐾 − 2 . ∀𝑗 ∈ 1, 𝑛 . 𝐹𝑗 𝑖 = ∅ 𝑟𝑒𝑡𝑢𝑟𝑛 ⊤;

 ∀𝑖 ∈ 1, 𝑛 . 𝐹𝑖 𝐾 ≔ ∅;
 𝐾 ≔ 𝐾 + 1;
}

(a) Each copy has its own frames.
(b) Use common SAT solver pool
to share information.
(c) Runs asynchronously most of
the time.
(d) Only synchronization is for
the termination check.

Synchronous Parallel
Execution – Terminates
only when all components
terminate

Proof of
correctness

in paper

12
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Parallel IC3: IC3ASync

𝑛 = #𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐼𝐶3 𝑠𝑜𝑙𝑣𝑒𝑟𝑠, 𝑒𝑎𝑐ℎ 𝑢𝑠𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑓𝑟𝑎𝑚𝑒𝑠
∀𝑖 = 1, 𝑛 . 𝐹𝑖 0. . 𝐾 − 1 , 𝐾𝑖 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹𝑖
𝑏𝑢𝑔 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑖𝑓 𝑎 𝑏𝑢𝑔 ℎ𝑎𝑠 𝑏𝑒𝑒𝑛 𝑓𝑜𝑢𝑛𝑑

𝑏𝑜𝑜𝑙 𝐼𝐶3𝐴𝑆𝑦𝑛𝑐() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 𝑏𝑢𝑔 ≔⊥;
 𝐼𝐶3𝐶𝑜𝑝𝑦1 ;⋄ ⋯ ⋄ 𝐼𝐶3𝐶𝑜𝑝𝑦𝑛 ;
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑢𝑔?⊥∶ ⊤;
}

𝑣𝑜𝑖𝑑 𝐼𝐶3𝐶𝑜𝑝𝑦𝑖 {
 𝐹𝑖 0 ≔ 𝐼; 𝐹𝑖 1 ≔ 𝐹𝑖 2 ≔ ∅;𝐾𝑖 ≔ 3;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛𝑖 ;
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛;
 𝑝𝑟𝑜𝑝𝑜𝑔𝑎𝑡𝑒𝑖 ;

 𝑖𝑓 ∃𝑖 ∈ 1, 𝐾𝑖 − 2 .∀𝑗 ∈ 1, 𝑛 . 𝐹𝑗 𝑖 = ∅
 𝑟𝑒𝑡𝑢𝑟𝑛;
 𝐹𝑖 𝐾𝑖 ≔ ∅;𝐾𝑖 ≔ 𝐾𝑖 + 1;
} (a) Each copy runs completely

asynchronously.
(b) Termination check distributed over
multiple copies.
(c) Use common SAT solver pool to share
information.

Proof of
correctness

in paper

Asynchronous Parallel
Execution – Terminates as
soon as any one
component terminates

13
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Parallel IC3: IC3Proof

𝑛 = #𝑜𝑓 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝐼𝐶3 𝑠𝑜𝑙𝑣𝑒𝑟𝑠, 𝑒𝑎𝑐ℎ 𝑢𝑠𝑖𝑛𝑔 𝑖𝑡𝑠 𝑜𝑤𝑛 𝑓𝑟𝑎𝑚𝑒𝑠
∀𝑖 = 1, 𝑛 . 𝐹𝑖 0. . 𝐾 − 1 , 𝐾𝑖 = 𝑠𝑖𝑧𝑒 𝑜𝑓 𝐹𝑖
𝑏𝑢𝑔, 𝑠𝑎𝑓𝑒 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑙𝑎𝑔 𝑡𝑜 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑏𝑢𝑔 𝑜𝑟 𝑠𝑎𝑓𝑒𝑡𝑦 𝑝𝑟𝑜𝑜𝑓

𝑏𝑜𝑜𝑙 𝐼𝐶3𝑃𝑟𝑜𝑜𝑓() {
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 ¬𝑆 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝑖𝑛 0 𝑜𝑟 1 𝑠𝑡𝑒𝑝𝑠;
 𝑏𝑢𝑔 ≔⊥; 𝑠𝑎𝑓𝑒 ≔⊥;
 𝐼𝐶3𝑃𝑟𝐶𝑜𝑝𝑦1 ;⋄ ⋯ ⋄ 𝐼𝐶3𝑃𝑟𝐶𝑜𝑝𝑦𝑛 ;
 𝑟𝑒𝑡𝑢𝑟𝑛 𝑏𝑢𝑔?⊥∶ ⊤;
}

𝑣𝑜𝑖𝑑 𝐼𝐶3𝑃𝑟𝐶𝑜𝑝𝑦𝑖 {
 𝐹𝑖 0 ≔ 𝐼; 𝐹𝑖 1 ≔ 𝐹𝑖 2 ≔ ∅;𝐾𝑖 ≔ 3;
 𝑤ℎ𝑖𝑙𝑒 ⊤
 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑒𝑛𝑖 ;
 𝑖𝑓 𝑏𝑢𝑔 𝑟𝑒𝑡𝑢𝑟𝑛;
 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑃𝑟𝑜𝑜𝑓𝑖 ;
 𝑖𝑓 𝑠𝑎𝑓𝑒 𝑟𝑒𝑡𝑢𝑟𝑛;
 𝐹𝑖 𝐾𝑖 ≔ ∅;𝐾𝑖 ≔ 𝐾𝑖 + 1;
}

Details and Proof of correctness in paper

𝑣𝑜𝑖𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑃𝑟𝑜𝑜𝑓𝑖 {
 𝑎 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑙𝑒𝑚𝑚𝑎𝑠
 𝑓𝑜𝑟𝑤𝑎𝑟𝑑;
 𝑏 𝑖𝑓 𝑎 𝑓𝑟𝑎𝑚𝑒 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑒𝑚𝑝𝑡𝑦,
 𝑐ℎ𝑒𝑐𝑘 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑒𝑚𝑚𝑎𝑠 𝑎𝑡 𝑡ℎ𝑎𝑡 𝑙𝑒𝑣𝑒𝑙
 𝑜𝑣𝑒𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑐𝑜𝑝𝑖𝑒𝑠 𝑓𝑜𝑟𝑚 𝑎𝑛
 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑣𝑎𝑟𝑖𝑎𝑛𝑡
 𝑐 𝑖𝑓 𝑠𝑜 𝑠𝑒𝑡 𝑓𝑙𝑎𝑔 ≔ ⊤ 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛
 𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑟𝑒𝑡𝑢𝑟𝑛 𝑎𝑓𝑡𝑒𝑟 𝑎𝑙𝑙 𝑙𝑒𝑚𝑚𝑎𝑠
 ℎ𝑎𝑣𝑒 𝑏𝑒𝑒𝑛 𝑝𝑢𝑠ℎ𝑒𝑑 𝑓𝑜𝑟𝑤𝑎𝑟𝑑
}

Refer to IC3Sync, IC3Async, and IC3Proof
collectively as ParIC3

14
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Unpredictability in Runtime of Parallel IC3

Matches Weibull Distribution = Minimum of iid random
variables under Extreme Value Theorem
Intuition: IC3 copies “compete” and the fastest one “wins”

15
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Goodness of Fit to Weibull – IC3Sync

(a) Used a cluster of 11 machines,
each with 16 cores@2.4GHz and
[48,190]GB of RAM.
(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)
(c) Solved each 3000 times
(d) Collected solving time
(e) Extracted Weibull parameters
 -- 𝑘 : shape
 -- 𝜆 : scale
(f) Compared predicated mean and
variance from 𝑘 and 𝜆 with
observed from the actual runtimes

mailto:cores@2.4GHz

16
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Goodness of Fit to Weibull – IC3ASync

(a) Cluster of 11 machines, each
with 16 cores@2.4GHz and
[48,190]GB of RAM.
(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)
(c) Solved each 3000 times
(d) Collected solving time
(e) Extracted Weibull parameters
 -- 𝑘 : shape
 -- 𝜆 : scale
(f) Compared predicated mean and
variance from 𝑘 and 𝜆 with
observed from the actual runtimes

mailto:cores@2.4GHz

17
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Goodness of Fit to Weibull – IC3Proof

(a) Cluster of 11 machines, each
with 16 cores@2.4GHz and
[48,190]GB of RAM.
(b) Selected 10 examples from
HWMCC’14 (5 safe, 5 buggy)
(c) Solved each 3000 times
(d) Collected solving time
(e) Extracted Weibull parameters
 -- 𝑘 : shape
 -- 𝜆 : scale
(f) Compared predicated mean and
variance from 𝑘 and 𝜆 with
observed from the actual runtimes

mailto:cores@2.4GHz

18
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Portfolio of IC3Pars

Run several IC3Pars in parallel

• Completely independent

- no data sharing among different IC3Pars

- data shared only between IC3 copies within the same IC3Par

• Stop as soon as one IC3Par completes

Intuition: With a large enough portfolio, we can get lucky

• But how large should the portfolio be?

- e.g., if we want to beat the average performance of a single

IC3Par solver with 0.99999 probability?

- can statistical analysis provide an answer?

• Yes, answer=20

19
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Statistical Analysis of ParIC3 Portfolio

Consider portfolio 𝑃1, … , 𝑃𝑚 of 𝑚 ParIC3s working on a problem

𝑌𝑖 = time taken by the 𝑖-th solver ∼ 𝑊𝐸𝐼(𝑘, 𝜆)

Let 𝑡∗ = 𝐸 𝑌𝑖 = expected solve time by single IC3Par = 𝜆Γ(1 +
1

𝑘
)

𝑌 = min 𝑌1, … , 𝑌𝑚 = solve time by portfolio ∼ 𝑊𝐸𝐼(𝑘,
𝜆

𝑚
1
𝑘

)

Let 𝑝 𝑚 = 𝑃 𝑌 ≤ 𝑡∗ =probability that portfolio does better than

expected solving time of a single IC3Par

Result: 𝑝 𝑚 > 1 − 𝑒−
𝑚

𝑒𝛾 where 𝛾 = 0.57721 is the Euler-

Mascheroni constant.

Plugging in1 − 𝑒−
𝑚

𝑒𝛾 = 0.99999 we get 𝑚 = 20

• A portfolio of 20 IC3Pars will beat the average IC3Par in a

single attempt with probability 0.99999

20
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Results: Parallel PDR Speedup

Portfolio of 20 IC3Par solvers. Each IC3Par Solver has 4 IC3 copies. SAT solver
pool size = 3. Experiments done on a 128 Core machine running at 2.67GHz
and 1TB RAM. IC3Proof performs best overall – looking for inductive
invariants intermittently pays off. IC3Rnd = Portfolio of 20 IC3s with a
randomized SAT solver. Some speedup but not as good as IC3Par.

21
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Results: Parallel PDR vs IC3Par2010

IC3Par2010 – parallel version of IC3 presented in original (VMCAI’11) IC3 paper
Parallel PDR better for unsafe cases – i.e., better at finding counterexamples
Difference is less clear for safe cases, each better in some cases

22
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

Concluding Thoughts

• We have some new ways of parallelizing IC3

• Modest speedups with portfolios – improves over previous

attempts in some cases

• Statistical analysis gives numeric values to good portfolio size

• Connections with parallelizing other verification tools?

• we rely on data structures peculiar to IC3

• monotonicity and invariants maintained by the algorithm

• Can the statistical analysis be done for other portfolios?

• Our result tied to a specific distribution (Weibull) of runtime

• Does this hold for parallel SAT/SMT solvers?

• If not, can we derive similar statistical results?

23
Multi-Threaded IC3 Portfolios

January 19, 2016

© 2016 Carnegie Mellon University

[Distribution Statement A]

Approved for Public Release; Distribution is Unlimited

QUESTIONS?

