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Abstract. Three variants of multi-threaded ic3 are presented. Each
variant has a fixed number of ic3s running in parallel, and communi-
cating by sharing lemmas. They differ in the degree of synchronization
between threads, and the aggressiveness with which proofs are checked.
The correctness of all three variants is shown. The variants have unpre-
dictable runtime. On the same input, the time to find the solution over
different runs varies randomly depending on the thread interleaving. The
use of a portfolio of solvers to maximize the likelihood of a quick solution
is investigated. Using the Extreme Value theorem, the runtime of each
variant, as well as their portfolios is analyzed statistically. A formula for
the portfolio size needed to achieve a verification time with high proba-
bility is derived, and validated empirically. Using a portfolio of 20 parallel
ic3s, speedups over 300 are observed compared to the sequential ic3 on
hardware model checking competition examples. The use of parameter
sweeping to implement a solver that performs well over a wide range of
problems with unknown “hardness” is investigated.

1 Introduction

In recent years, ic3 [6] has emerged as a leading algorithm for model checking
hardware. It has been refined [10] and incorporated into state-of-the-art tools,
and generalized to verify software [12, 8]. Our interest is that ic3 is amenable
to parallelization [6], and promises new approaches to enhance the capability of
model checking by harnessing the abundant computing power available today.
Indeed, the original ic3 paper [6] described a parallel version of ic3 informally
and reported on its positive performance. In this paper, we build on that work
and make three contributions.

First, we formally present three variants – ic3sync, ic3async and ic3proof
– of parallel ic3, and prove their correctness. All the variants have some common
features: (i) they consist of a fixed number of threads that execute in parallel;
(ii) each thread learns new lemmas and looks for counterexamples (CEXes) or
proofs as in the original ic3; (iii) all lemmas learned by a thread are shared with
the other threads to limit duplicated effort; and (iv) if any thread finds a CEX,
the overall algorithm declares the problem unsafe and terminates.
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However, the variants differ in the degree of inter-thread synchronization,
and the frequency and technique for detecting proofs, making different trade-
offs between the overhead and likelihood of proof-detection. Threads in ic3sync
(cf. Sec. 4.1) synchronize after each round of new lemma generation and propa-
gation, and check for proofs in a centralized manner. Threads in ic3async (cf.
Sec. 4.2) are completely asynchronous. Proof-detection is decentralized and done
by each thread periodically. Finally, threads in ic3proof are also asynchronous
and perform their own proof detection, but more aggressively than ic3async.
Specifically, each thread saves the most recent set of inductive lemmas con-
structed. When one of the threads finds a new set of inductive lemmas, it checks
if the collection of inductive lemmas across all threads form an inductive invari-
ant. Thus, in terms of increasing overhead (and likelihood) of proof-detection,
the variants are ordered as follows: ic3sync, ic3async, and ic3proof. Collec-
tively, we refer to all three variants as ic3par.

The runtime of ic3par is unpredictable (this is a known phenomenon [6]).
In essence, the number of steps to arrive at a proof (or CEX) is sensitive to the
thread interleaving. We propose to counteract this variance using a portfolio –
run several ic3pars in parallel, and stop as soon as any one terminates with an
answer. But how large should such a portfolio be? Our second contribution is
a statistical analysis to answer this question. Our insight is that the runtime of
ic3par should follow the Weibull distribution [20] closely. This is because it can
be thought of as the minimum of the runtimes of the threads in ic3par, which
are themselves independent and identically distributed (i.i.d.) random variables.
According to the Extreme Value theorem [11], the minimum of i.i.d. variables
converges to a Weibull. We empirically demonstrate the validity of this claim.

Next, we hoist the same idea to a portfolio of ic3pars. Again, the runtime of
the portfolio should be approximated well by a Weibull, since it is the minimum
of the runtime of each ic3par in the portfolio. Under this assumption, we derive
a formula (cf. Theorem 5) to compute the portfolio size sufficient to solve any
problem with a specific probability and speedup compared to a single ic3par.
For example, this formula implies that a portfolio of 20 ic3pars has 0.99999
probability of solving a problem in time no more than the “expected time” for a
single ic3par to solve it. We empirically show (cf. Sec. 6.3) that the predictions
based on this formula have high accuracy. Note that each solver in the portfolio
potentially searches for a different proof/CEX. The first one to succeed provides
the solution. In this way, a portfolio utilizes the power of ic3par to search for a
wide range of proofs/CEXes without sacrificing performance.

Finally, we implement all three ic3par variants, and evaluate them on bench-
marks from the 2014 Hardware Model Checking Competition (HMCC14) and
the Tip Suite. Using each variant individually, and in portfolios of size 20, we ob-
serve that ic3proof and ic3async outperform ic3sync. Moreover, compared
to a purely sequential ic3, the variants are faster, providing an average speedup
of over 6 and a maximum speedup of over 300. We also show that widening the
proof search of ic3 by randomizing its SAT solver is not as effective as par-
allelization. In addition, we evaluate the performance of the parallel version of



ic3 reported earlier [6], which we refer to as ic3par2010. Experimental results
indicate that our parallelization approach is a good complement to ic3par2010,
and overall outperforms it. Complete details are presented in Sec. 6.1, Sec. 6.2,
and Sec. 6.3.

Next, we note that ic3par is paramaterized by the number of threads and
SAT solvers. We empirically show that the parameter value affects performance
of ic3par significantly, and the best parameter choice is located unpredictably
in the input space. Thus, for any input problem, the best parameter choice is
difficult to compute. However, we show empirically that a “parameter sweep-
ing” [2] solver that executes a randomly selected ic3par variant with random
parameters is competitive with the best ic3par variant with fixed parameters
over a range of problems. Complete details are presented in Sec. 6.4.

For brevity, we defer proofs and other supporting material to an extended
version of the paper [7]. The rest of the paper is organized as follows. Sec. 2
surveys related work. Sec. 3 presents preliminary definitions. Sec. 4 presents
the three variants of parallel ic3. Sec. 5 presents the statistical analysis of the
runtime of an ic3par solver, as well as a portfolio of such solvers. Sec. 6 presents
our experimental results, and Sec. 7 concludes.

2 Related Work

The original ic3 paper [6] presents a parallel version informally, which we call
ic3par2010, and shows empirically that parallelism can improve verification
time. Our ic3par solvers were inspired by this work, but are different. For ex-
ample, the parallel ic3 in [6] implements clause propagation by first distributing
learned clauses over all solvers and then propagating them one frame at a time,
in lock step. It also introduces uncertainty in the proof search by randomizing
the backend SAT solver. Our ic3par solvers perform clause propagation asyn-
chronously, and use deterministic SAT solvers. We also present each ic3par
variant formally with pseudo-code and prove their correctness. In addition, we
evaluate the performance of ic3par2010 empirically, and show that our par-
allelization approach provides a good complement to (and overall outperforms)
it in terms of speedup. Finally, we go beyond the earlier work on parallelizing
ic3 [6] by performing a statistical analysis of the runtimes of both ic3par solvers
and their portfolios. Experimental results (cf. Sec. 6.1) indicate that a portfolio
of ic3par solvers is more efficient than a portfolio composed of ic3 solvers with
randomized SAT solvers.

A number of projects focus on parallelizing model checking [13, 5, 17, 3, 4,
1]. Ditter et al. [9] have developed GPGPU algorithms for explicit-state model
checking. They do not report on variance in runtime, nor analyze it statistically
like us, or explore the use of portfolios. Lopes et al. [15] do address variance
in runtime of a parallel software model checker. However, their approach is to
make the model checker’s runtime more predictable by ensuring that the coun-
terexample generation procedure is deterministic. They also do not perform any
statistical analysis or explore portfolios.



Portfolios have been used successfully in SAT solving [22, 19, 14, 16], SMT
solving [21] and symbolic execution [18]. However, these portfolios are composed
of a heterogeneous set of solvers. Our focus is on homogeneous portfolios of
ic3par solvers and statistical analysis of their runtimes.

3 Preliminaries

Assume Boolean state variables V , and their primed versions V ′. A verification
problem is (I, T, S) where I(V ), T (V, V ′) and S(V ) denote initial states, transi-
tion relation and safe states, respectively. We omit V when it is clear from the
context, and write S′ to mean S(V ′). Let Post(X) denote the image of X(V )
under the transition relation T , i.e., Post(X) = (∃V � X ∧ T )[V ′ 7→ V ]. Let
Postk(X) be the result of applying Post(·) k times on X with Post0(X) = X,
and Postk+(X) =

⋃
j≥k

Postj(X). The verification problem (I, T, S) is safe if

Post0+(I) ⊆ S, and unsafe (a.k.a. buggy) otherwise. A “lemma” is a clause (i.e.,
disjunction of minterms) over V , and a “frame” is a set of lemmas.

A random variable X has a Weibull distribution with shape k and scale
λ, denoted X ∼ wei(k, λ), iff its probability density function (pdf) pdf X and
cumulative distribution function (cdf) cdf X are defined as follows:

pdf X(x) =

{
k
λ (xλ )k−1e−(

x
λ )
k

if x ≥ 0
0 if x < 0

cdf X(x) = 1− e−( xλ )
k

Let X1, . . . , Xn be i.i.d. random variables (rvs) whose pdfs are lower bounded
at zero, i.e., ∀x < 0 � pdf Xi(x) = 0. Then, by the Extreme Value theorem [11]
(EVT), the pdf of the rv X = min(X1, . . . , Xn) converges to a Weibull as n→∞.
The “Gamma” function, Γ , is an extension of the factorial function to real and
complex numbers, with its argument decreased by 1, and is defined as follows:
Γ (t) =

∫∞
x=0

xt−1e−xdx.

4 Parallelizing IC3

We begin with a description of the sequential ic3 algorithm. Fig. 1 shows its
pseudo-code. ic3 works as follows: (i) checks that no state in ¬S is reachable in
0 or 1 steps from some state in I (lines 16–17); (ii) iteratively construct an array
of frames, each consisting of a set of clauses, as follows: (a) initialize the frame
array and flags (lines 18–19); (b) strengthen() the frames by adding new clauses
(line 22); if a counterexample is found in this step (indicated by bug being set),
ic3 terminates (line 24); (c) otherwise, propagate() clauses that are inductive
to the next frame (line 26); if a proof of safety is found (indicated by an empty
frame), ic3 again terminates (lines 27–28); (d) add a new empty frame to the
end of the array (line 30) and repeat from step (b). In the rest of this paper we
use the term “function” to mean a “procedure”, as opposed to a mathematical
function. In particular, we use terms “pdf” and “cdf” to mean probability and
cumulative distribution functions of random variables, respectively.



1 //-- global variables
2 var (I, T, S) : problem (P )
3 var F: frame [] (array of frames)
4 var K: int (size of F)
5 var bug: bool (CEX flag)
6
7 //-- invariants
8 ∀i ∈ [0,K− 1], let f(i) =

∧
j∈[i,K−1]

∧
α∈F[j]

α

9 A1 : ∀i ∈ [0,K− 1] � I =⇒ f(i)

10 A2 : ∀i ∈ [0,K− 2] � f(i) ∧ T =⇒ f ′(i+ 1)

11 A3 : ∀i ∈ [0,K− 3] � f(i) ∧ T =⇒ S′

12 A4 : ∀i ∈ [0,K− 2] � f(i) ∧ T =⇒ S′

13
14 //-- main function.
15 bool IC3 ()

16 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
17 return ⊥;
18 K := 3; F[0] := I; F[1] := ∅;
19 F[2] := ∅; bug := ⊥;
20 while (>)
21 @INV{I1 : A1 ∧ A2 ∧ A3}
22 strengthen(F,K);
23 @INV{I2 : bug ∨ (A1 ∧ A2 ∧ A4)}
24 if (bug) return ⊥;
25 @INV{I3 : A1 ∧ A2 ∧ A4}
26 propagate(F,K);
27 if (∃i ∈ [1,K− 2] � F[i] = ∅)
28 return >;
29 @INV{I3}
30 F[K] := ∅; K := K + 1;

31 //-- add new lemmas to frames. stop
32 //-- with a CEX or when A4 holds.
33 void strengthen (F,K)
34 var PQ : priority queue
35 while (>)
36 if (f(K − 2) ∧ T =⇒ S′) return;

37 let m |= f(K − 2) ∧ T ∧ ¬S′;
38 PQ.insert(m,K − 3);
39 while (¬PQ.empty())
40 (m, l) := PQ.top();

41 if (f(l) ∧ T ∧m′ = ⊥)
42 F [l + 1] := F [l + 1] ∪ {¬m};
43 PQ.erase(m, l);
44 else if (l = 0)
45 bug := >; return;
46 else
47 let m0 |= f(l) ∧ T ∧m;
48 PQ.insert(m0, l− 1);
49
50
51 //-- push inductive clauses forward.
52 void propagate(F,K)
53 for i : 1 . . . K − 2
54 for α ∈ F [i]

55 if (f(i) ∧ T =⇒ α′)
56 F [i+ 1] := F [i+ 1] ∪ {α};
57 F [i] := F [i] \ {α};

Fig. 1. Pseudo-Code for ic3. Variables are passed by reference, and arrays are indexed
from 0. This holds for all the pseudo-code in this article.

Definition 1 (Frame Monotonicity). A function is frame monotonic if at
each point during its execution, ∀i ∈ [0,K − 1] � f(i) =⇒ f̃(i) where f̃(i) is the
value of f(i) when the function was called.

Correctness. Fig. 1 also shows the invariants (indicated by @INV) before and
after strengthen() and propagate(). Since strengthen() always adds new
lemmas to frames, it is frame monotonic, and hence it maintains A1 and A3. It
also maintains A2 since a new lemma ¬m is added to frame F [l + 1] (line 42)
only if f(l) ∧ T =⇒ ¬m′ (line 41). Finally, when strengthen() returns, then
either bug = > (line 45), or f(K − 2) ∧ T =⇒ S′ (line 36). Hence I2 is a valid
post-condition for strengthen(). Also, propagate() is frame monotonic since
it always pushes inductive lemmas forward (the order of the two statements at
lines 56–57 is crucial for this). Hence, propagate() maintains A1 and A4 at all
times. It also maintains A2 since a new lemma α is added to frame F [i+ 1] (line
56) only if f(i) ∧ T =⇒ α′ (line 55). Hence I3 is a valid post-condition for
propagate(). Finally, note that A4 ≡ A3 ∧ f [K − 2] =⇒ S. Hence, after K
is incremented, A4 becomes A3. Also, since the last frame is initialized to ∅, A1

and A2 are preserved. Hence: {I3}F[K] := ∅; K := K + 1; {I1}. The correctness
of ic3 is summarized by Theorem 1. Its proof is in the appendix of [7].



58 //-- global variables
59 var (I, T, S) : problem (P )
60 var ∀i ∈ [1, n] � Fi: frame []
61 var K: int (size of each Fi)
62 var bug: bool (CEX flag)
63
64 //-- invariants
65 ∀j ∈ [0,K− 1], let
66 f(j) =

∧
i∈[1,n]

∧
k∈[j,K−1]

∧
α∈Fi[k]

α

67
68 B1 : ∀j ∈ [0,K− 1] � I =⇒ f(j)

69 B2 : ∀j ∈ [0,K− 2] � f(j) ∧ T =⇒ f ′(j + 1)

70 B3 : ∀j ∈ [0,K− 3] � f(j) ∧ T =⇒ S′

71 B4 : ∀j ∈ [0,K− 2] � f(j) ∧ T =⇒ S′

72 bool IC3Sync (n)

73 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
74 return ⊥;
75 K := 3; bug := ⊥;
76 ∀i ∈ [1, n] � Fi[0] := I; Fi[1] := Fi[2] := ∅;
77 while (>)
78 @INV{I4 : B1 ∧ B2 ∧ B3}
79 {strengthen(F1,K); propagate(F1,K)}
80 ‖ · · · ‖
81 {strengthen(Fn,K); propagate(Fn,K)};
82 @INV{I5 : bug ∨ (B1 ∧ B2 ∧ B4)}
83 if (bug) return ⊥;
84 @INV{I6 : B1 ∧ B2 ∧ B4}
85 if (∃j ∈ [1,K− 2] � ∀i ∈ [1, n] � Fi[j] = ∅)
86 return >;
87 @INV{I6}
88 ∀i ∈ [1, n] � Fi[K] := ∅; K := K + 1;

Fig. 2. Pseudo-Code for ic3sync(n). Functions strengthen() and propagate() are
defined in Fig. 1.

Theorem 1. If IC3() returns >, then the problem is safe. If IC3() returns ⊥,
then the problem is unsafe.

We now present the three versions of parallel ic3 and their correctness (their
termination follows in the same way as ic3 [6] – see Theorem 5 in the appendix
of [7]).

4.1 Synchronous Parallel IC3

The first parallelized version of ic3, denoted ic3sync, runs a number of copies of
the sequential ic3 “synchronously” in parallel. Let ic3sync(n) be the instance
of ic3sync consisting of n copies of ic3 executing concurrently. The copies
maintain separate frames. However, for any copy, the frames of other copies
act as “background lemmas”. Specifically, the copies interact by: (i) using the
frames of all other copies when computing f(i); (ii) declaring the problem unsafe
if any copy finds a counterexample; (iii) declaring the problem safe if some frame
becomes empty across all the copies; and (iv) “synchronizing” after each call to
strengthen() and propagate().

The pseudo-code for ic3sync(n) is shown in Fig. 2. The main function is
IC3Sync(). After checking the base cases (lines 73–74), it initializes flags and
frames (lines 75–76), and then iteratively performs the following steps: (i) run
n copies ic3 where each copy does a single step of strengthen() followed by
propagate() (lines 79–81); (ii) check if any copy of ic3 found a counterexample,
and if so, terminate (line 83); (iii) check if a proof of safety has been found, and if
so, terminate (lines 85–86); and (iv) add a frame and repeat from step (i) above
(line 88). Functions strengthen() and propagate() are syntactically identical
to ic3 (cf. Fig. 1). However, the key semantic difference is that lemmas from
all copies are used to define f(j) (lines 65–66). Global variables are shared, and
accessed atomically. Note that even though all ic3 copies write to variable bug ,
there is no race condition since they always write the same value (>).



89 //-- invariants
90 ∀j ∈ [0,max(K1, . . . ,Kn)− 1], let
91 f(j) =

∧
i∈[1,n]

∧
k∈[j,Ki−1]

∧
α∈Fi[k]

α

92
93 C1 : ∀j ∈ [0,Ki − 1] � I =⇒ f(j)

94 C2 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ f ′(j + 1)

95 C3 : ∀j ∈ [0,Ki − 3] � f(j) ∧ T =⇒ S′

96 C4 : ∀j ∈ [0,Ki − 2] � f(j) ∧ T =⇒ S′

97
98
99

100 //-- top -level function
101 bool IC3Async (n)

102 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
103 return ⊥;
104 bug := ⊥;
105 IC3Copy(1) � · · · � IC3Copy(n);
106 return bug ? ⊥ : >;

107 //-- global variables
108 var (I, T, S) : problem (P )
109 var ∀i ∈ [1, n] � Fi: frame []
110 var ∀i ∈ [1, n] � Ki: int (size of Fi)
111 var bug: bool (CEX flag)
112
113 void IC3Copy (i)
114 Ki := 3; Fi[0] := I;
115 Fi[1] := ∅; Fi[2] := ∅;
116 while (>)
117 @INV{I7 : C1 ∧ C2 ∧ C3}
118 strengthen(Fi,Ki);
119 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
120 if (bug) return;
121 @INV{I9 : C1 ∧ C2 ∧ C4}
122 propagate(Fi,Ki);
123 if (∃j ∈ [1,Ki − 2] � ∀l ∈ [1, n] � Fl[j] = ∅)
124 return;
125 @INV{I9}
126 Fi[Ki] := ∅; Ki := Ki + 1;

Fig. 3. Pseudo-Code for ic3async(n). Functions strengthen() and propagate() are
defined in Fig. 1.

Correctness. The correctness of ic3sync follows from the invariants specified
in Fig. 2. To show these invariants are valid, the main challenge is to show that
if I4 holds at line 78, then I5 holds at line 82. Note that since strengthen()

and propagate() are frame monotonic, they preserve B1 and B3. This means
that B1 ∧B3 holds at line 82. Now suppose that at line 82, we have ¬bug . This
means that each strengthen() called at lines 79–81 returned from line 36. Thus,
the condition f(K − 2) ∧ T =⇒ S′ was established at some point, and once
established, it continues to hold due to the frame monotonicity of strengthen()
and propagate(). Since B4 ≡ B3 ∧ (f(K− 2) ∧ T =⇒ S′), we therefore know
that B1 ∧B4 holds at line 82. Also, B2 holds at line 82 since a new lemma α is
only added to frame Fi[j+ 1] by strengthen() (line 42) and propagate() (line
56) under the condition f(j)∧T =⇒ α′. Note that once f(j)∧T =⇒ α′ is true,
it continues to hold even in the concurrent setting due to frame monotonicity.
Finally, the statement at line 88 transforms I6 to I4. The correctness of ic3sync
is summarized by Theorem 2. Its proof is in the appendix of [7].

Theorem 2. If IC3Sync() returns >, then the problem is safe. If IC3Sync()
returns ⊥, then the problem is unsafe.

4.2 Asynchronous Parallel IC3

The next parallelized version of ic3, denoted ic3async, runs a number of copies
of the sequential ic3 “asynchronously” in parallel. Let ic3async(n) be the in-
stance of ic3async consisting of n copies of ic3 executing concurrently. Similar
to ic3sync, the copies maintain separate frames, interact by sharing lemmas
when computing f(i), and declare the problem unsafe if any copy finds a coun-
terexample. However, due to the lack of synchronization, proof detection is dis-
tributed over all the copies instead of being centralized in the main thread.



127 //-- global variables
128 var (I, T, S) : problem (P )
129 var ∀i ∈ [1, n] � Fi,Pi: frame []
130 var ∀i ∈ [1, n] � Ki: int (size of Fi and Pi)
131 var bug, safe: bool (CEX and proof flags)
132
133
134 void IC3PrCopy (i)
135 Ki := 3; Fi[0] := I;
136 Fi[1] := ∅; Fi[2] := ∅;
137 while (>)
138 @INV{I7 : C1 ∧ C2 ∧ C3}
139 strengthen(Fi,Ki);
140 @INV{I8 : bug ∨ (C1 ∧ C2 ∧ C4)}
141 if (bug) return;
142 @INV{I9 : C1 ∧ C2 ∧ C4}
143 propProof(Fi,Ki);
144 if (safe) return;
145 @INV{I9}
146 Fi[Ki] := ∅; Ki := Ki + 1;

147 bool IC3Proof (n)

148 if (I ∧ ¬S 6= ⊥) ∨ (I ∧ T ∧ ¬S′ 6= ⊥)
149 return ⊥;
150 bug := ⊥; safe := ⊥;
151 IC3PrCopy(1) � · · · � IC3PrCopy(n);
152 return bug ? ⊥ : >;
153
154 void propProof(F,K)
155 for j : 1 . . . K − 2
156 for α ∈ F [j]

157 if (f(j) ∧ T =⇒ α′)
158 F [j + 1] := F [j + 1] ∪ {α};
159 F [j] := F [j] \ {α};
160 if (F [j] = ∅)
161 Pj :=

⋃
j<k≤K−1

F [k];

162 Π :=
⋃

{i|1≤i≤n∧j<Ki}
Pi;

163 if (Π ∧ T =⇒ Π′)
164 safe := >; return;

Fig. 4. Pseudo-Code for ic3proof(n). Function strengthen() is defined in Fig. 1.
Formulas f(j), I7, I8, and I9 are defined in Fig. 3.

Fig. 3 shows the pseudo-code for ic3async(n). The main function is
IC3Async(). After checking the base cases (lines 102–103), it initializes flags
(line 104), launches n copies of ic3 in parallel (line 105) and waits for some copy
to terminate (the � operator), and checks the flag and returns with an appropri-
ate result (line 106). Function IC3Copy() is similar to IC3() in Fig. 1. The key
difference is that lemmas from all copies are used to compute f(j) (lines 90–91).

Correctness. The correctness of ic3async follows from the invariants spec-
ified in Fig. 3. To see why these invariants are valid, note that C1 and C3

are always preserved due to frame monotonicity. If strengthen() returns with
bug = ⊥, then it returned from line 36, and hence f(Ki − 2) ∧ T =⇒ S′ was
true at some point in the past and continues to hold due to frame monotonicity.
Together with C3, this implies that C4 holds at line 119. Also, C2 holds at line
119 since a new lemma α is only added to frame Fi[j+1] by strengthen() (line
42) and propagate() (line 56) under the condition f(j)∧ T =⇒ α′. Note that
once f(j)∧T =⇒ α′ is true, it continues to hold even under concurrency due to
frame monotonicity. Hence, I8 holds at line 119. Since bug is never set to ⊥ after
line 104, this means that I9 holds at line 121 even under concurrency. Finally,
the statement at line 126 transforms I9 to I7. The correctness of ic3async is
summarized by Theorem 3. Its proof is in the appendix of [7].

Theorem 3. If IC3Async() returns >, then the problem is safe. If IC3Async()
returns ⊥, then the problem is unsafe.

4.3 Asynchronous Parallel IC3 With Proof-Checking

The final parallelized version of ic3, denoted ic3proof, is similar to ic3async,
but performs more aggressive checking for proofs. Let ic3proof(n) be the in-
stance of ic3proof consisting of n copies of ic3 executing concurrently. Similar



to ic3async, the copies maintain separate frames, interact by sharing lemmas
when computing f(i), and declare the problem unsafe if any copy finds a coun-
terexample. However, whenever a copy finds an empty frame, it checks whether
the set of lemmas over all the copies for that frame forms an inductive invariant.

The pseudo-code for ic3proof(n) is shown in Fig. 4. The main function is
IC3Proof(). After checking the base cases (lines 148–149), it initializes flags
(line 150), launches n copies of ic3 in parallel (line 151) and waits for at least
one copy to terminate, and checks the flag and returns with an appropriate result
(line 152). Function IC3PrCopy is similar to IC3 in Fig. 1, but calls propProof()
instead of propagate() where, once an empty frame is detected (line 160), we
check whether a proof has been found by collecting the lemmas for that frame
(lines 161–162), and checking if these lemmas are inductive (line 163).

Correctness. The correctness of ic3proof follows from the invariants (whose
validity is similar to those for ic3async) specified in Fig. 4. It is summarized
by Theorem 4. The proof of the theorem is in the appendix of [7].

Theorem 4. If IC3Proof() returns >, then the problem is safe. If IC3Proof()
returns ⊥, then the problem is unsafe.

5 Parallel ic3 Portfolios

In this section, we investigate the question of how a good portfolio size can
be selected if we want to implement a portfolio of ic3pars. We begin with an
argument about the pdf of the runtime of ic3async(n).

Conjecture 1. The runtime of ic3async(n) converges to a Weibull rv as n→∞.

Argument: Recall that each execution of ic3async(n) consists of n copies of
ic3 running in parallel, and that ic3async(n) stops as soon as one copy finds a
solution. We can consider the runtime of each copy of ic3 to be a rv. Specifically,
let rv Xi be the runtime of the i-th copy of ic3 under the environment provided
by the other n − 1 copies. Recall that the pdf of Xi has a lower bound of 0,
since no run of ic3 can take negative time. Also, for the sake of argument,
assume that (X1, . . . , Xn) are i.i.d. since the interaction between the copies of
ic3 is logical and symmetric. Finally, let X be the random variable denoting the
runtime of ic3async(n). Note that X = min(X1, . . . , Xn). Hence, by the EVT,
X ∼ wei(k, λ) for large n. ut

A similar argument holds for ic3sync and ic3proof, and therefore their
runtime should follow Weibull as well. Indeed, despite the assumption of
(X1, . . . , Xn) being i.i.d., we empirically find that the runtime of ic3par(n)
follows a Weibull distribution closely for even modest values of n. Specifically,
we selected 10 examples (5 safe and 5 buggy) from HWMCC14, and for each
example we:

1. executed ic3async(4) “around” 3000 times (we actually ran each example
3000 times but some timed out – the exact number of timeouts varied across
examples);



ic3sync (4) ic3async (4) ic3proof (4)
Example k λ µ, µ∗ σ, σ∗ k λ µ, µ∗ σ, σ∗ k λ µ, µ∗ σ, σ∗

6s286 4.07 1119 1015,1015 280,274 4.44 990 902,903 230,220 4.35 980 892,892 232,228
intel026 2.71 49.0 43.6,44.2 17.3,14.6 3.70 50.2 45.3,46.2 13.6,10.1 3.70 50.1 45.2,46.1 13.6,10.3
6s273 3.80 26.1 23.6,23.6 6.93,6.57 4.11 23.5 21.3,21.4 5.85,5.36 4.17 23.3 21.2,21.3 5.73,5.29

intel057 6.58 16.0 14.9,15.1 2.66,2.11 7.31 17.2 16.1,16.1 2.60,2.46 7.52 17.8 16.7,16.9 2.63,2.07
intel054 7.82 24.3 22.8,23.0 3.46,2.94 8.69 26.1 24.6,24.8 3.38,2.84 9.26 26.1 24.7,24.8 3.20,2.92

6s215 2.38 7.69 6.82,7.03 3.05,2.34 4.71 6.75 6.17,6.21 1.49,1.34 4.72 6.38 5.84,5.90 1.41,1.21
6s216 1.95 35.1 31.1,31.0 16.6,16.9 3.56 27.5 24.8,24.9 7.74,6.97 2.78 28.1 25.0,25.1 9.74,9.05

oski3ub1i 5.98 54.9 50.9,51.4 9.90,7.90 7.02 52.3 48.9,49.2 8.20,6.71 4.78 54.8 50.2,50.8 11.9,9.53
oski3ub3i 5.71 52.4 48.5,48.9 9.84,8.00 5.51 52.2 48.2,48.6 10.1,8.51 5.66 52.2 48.2,48.5 9.87,8.39
oski3ub5i 5.08 66.8 61.4,61.9 13.8,11.6 4.94 67.2 61.6,62.0 14.2,12.4 4.93 66.2 60.7,61.1 14.0,12.1

SAFE 5.00 246 224,224 62.1,60.2 5.65 221 202,202 51.1,48.3 5.80 219 200,200 51.4,49.7
BUG 4.22 43.4 39.7,40.0 10.6,9.37 5.15 41.2 37.9,38.2 8.36,7.20 4.58 41.5 38.0,38.3 9.42,8.07
ALL 4.61 145 131,132 36.4,34.7 5.40 131 120,120 29.7,27.7 5.19 130 119,119 30.4,28.9

Fig. 5. Fitting ic3par(4) runtime to Weibull. First 5 examples are safe, next 5 are
buggy; SAFE, BUG, ALL = average over safe, buggy, and all examples; µ, µ∗ = pre-
dicted, observed mean; σ, σ∗ = predicted, observed standard deviation.

2. measured the runtimes;
3. estimated the k and λ values for the Weibull distribution that best fits these

values (using maximum likelihood estimation and the R statistical tool); and
4. computed the observed mean and standard deviation from the data, and the

predicted mean and standard deviation from the k and λ estimates.

We repeated these experiments with ic3sync and ic3proof. The results
are shown in Fig. 5. We see that in all cases, the observed mean and standard
deviation is quite close to the predicted ones, indicating that the estimated
Weibull distribution is a good fit for the measured runtimes. ic3async and
ic3proof have similar performance, are and slightly faster overall than ic3sync,
indicating that additional synchronization is counter-productive. The estimated
k and λ values vary widely over the examples, indicating their diversity. Note
that smaller values of λ mean a smaller expected runtime.

Determining Portfolio Size. Consider a portfolio of ic3pars. In general, in-
creasing the size of the portfolio reduces the expected time to solve a problem.
However, there is diminishing returns to adding more solvers to a portfolio in
terms of expected runtime. We now express this mathematically, and derive a
formula for computing a portfolio size to achieve an runtime with a target proba-
bility. Consider a portfolio of m ic3par solvers run on a specific problem. Let Yi
denote the runtime of the i-th ic3par. From previous discussion we know that

Yi ∼ wei(k, λ) for some k and λ. Therefore, the cdf of Yi is: cdf Yi(x) = 1−e−( xλ )k .
Note that Yi refers to an instance of ic3par, whereas Xi, used before, referred
to a single thread (executing a copy of ic3) within an instance of ic3par.

Let Y be the rv denoting the runtime of the portfolio. Thus, we have Y =
min(Y1, . . . , Ym). More importantly, the cdf of Y is:

cdf Y (x) = 1− (1− cdfY1
(x))× · · · × (1− cdf Ym(x))

= 1− (e−(
x
λ )
k

)m = 1− e−m( xλ )
k

= 1− e−( xm
1
k

λ )k



Note that this means Y is also a Weibull rv, not just when m → ∞ (as
per the EVT) but for all m. More specifically, Y ∼ wei(k, λ

m
1
k

). Recall that if

m = 1, then the expected time to solve the problem by the portfolio is E[Y1].
We refer to this time as t∗, the expected solving time for a single ic3par. Recall
the Gamma function Γ . Since Y1 ∼ wei(k, λ), it is known that t∗ = λΓ (1 + 1

k ).
Now, we come to our result, which expresses the probability that a portfolio of
m ic3pars will require no more than t∗ to solve the problem.

Theorem 5. Let p(m) be the probability that Y ≤ t∗. Then p(m) > 1 − e− m
eγ

where γ ≈ 0.57721 is the Euler-Mascheroni constant.

Proof. We know that:

p(m) = cdf Y (t∗) = 1− e−m(Γ (1+ 1
k ))

k

= 1− (α(k))m, where α(k) = e−(Γ (1+ 1
k ))

k

Next, observe that α(k) increases monotonically with k but does not diverge
as k →∞. For example, Fig. 11 in the appendix of [7] shows a plot of α(k). Since
we want to prove an lower bound on p(m), let us consider the limiting case k →
∞. It can be shown that (see Lemma 2 in the appendix of [7]): limk→∞ α(k) =

e−
1
eγ . In practice, as seen in Fig. 11 in the appendix of [7], the value of α(k)

converges quite rapidly to this limit as k increases. For example, α(5) > 0.91 ·
e−

1
eγ , and α(10) > 0.95 · e− 1

eγ . Since ∀k � α(k) < e−
1
eγ , we have our result:

p(m) > 1− (e−
1
eγ )m = 1− e− m

eγ

ut

Achieving a Target Probability. Now suppose we want p(m) to be greater
than some target probability p. Then, from Theorem 5, we have:

p = 1− (e−
1
eγ )m ⇐⇒ 1− p = e−

m
eγ ⇐⇒ ln(1− p) = −m

eγ

⇐⇒ ln( 1
1−p ) = m

eγ ⇐⇒ m = eγ ln( 1
1−p )

For example, if we want p = 0.99999, then m ≈ 20. Thus, a portfolio of 20
ic3pars has about 0.99999 probability of solving a problem at least as quickly as
the expected time in which a single ic3par will solve it. We validated the efficacy
of Theorem 5 by comparing its predictions with empirically observed results
on the HWMCC14 benchmarks. Overall, we find the observed and predicted
probabilities to agree significantly. Further details are presented in Sec. 6.3.

Speeding Up the Portfolio. To reduce the portfolio’s runtime below t∗, we must
increase m appropriately. In general, for any constant c ∈ [0, 1], the probability
that a portfolio of m ic3par solvers will have a runtime ≤ c · t∗ is given by:

p(m, c, k) = 1− e−m(c·Γ (1+ 1
k ))

k

For c < 1 we do not have a closed form for lim
k→∞

p(m, c, k), unlike when c = 1.

However, the value of p(m, c, k) is computable for fixed m, c and k. Fig. 6(a) plots



(a) (b)

Fig. 6. (a) p(m, c, 4) for different values of c; (b) p(m, .5, k) for different values of k.

p(m, c, 4) for m = {1, . . . , 100} and c = {0.4, 0.5, 0.6}. Fig. 6(b) plots p(m, .5, k)
for m = {1, . . . , 100} and k = {3, 4, 5}. As expected, p(m, c, k) increases with:
(i) increasing m; (ii) increasing c; and (iii) decreasing k. One challenge here is
that we do not know how to estimate k for a problem without actually solving
it. In general, a smaller value of k means that a smaller portfolio will reach the
target probability. In our experiments – recall Fig. 5 – we observed k-values in a
tight range (1–10) for problems from HWMCC14. These numbers can serve as
guidelines, and be refined based on additional experimentation.

6 Experimental Results

We implemented ic3sync, ic3async and ic3proof by modifying a pub-
licly available reference implementation of ic3 (https://github.com/arbrad/
IC3ref), which we call ic3ref. All propositional queries in ic3 are implemented
by calls to minisat. We refer to the variant of ic3ref that uses a randomized
minisat as ic3rnd. We use ic3rnd to introduce uncertainty in ic3 purely by
randomizing the backend SAT solver. We performed two experiments – one to
evaluate the effectiveness of the ic3par variants, and another to validate our
statistical analysis of their portfolios. All our tools and results are available at
http://www.andrew.cmu.edu/~schaki/misc/paric3.tgz.

Benchmarks. We constructed four benchmarks. The first was constructed
by pre-processing the safe examples from HWMCC14 (http://fmv.jku.at/
hwmcc14cav) with iimc (http://ecee.colorado.edu/wpmu/iimc), and select-
ing the ones solved by ic3ref within 900s on a 8 core 3.4GHz machine with
8GB of RAM. The remaining three benchmarks were constructed similarly
from the buggy examples from HWMCC14, and the safe and buggy examples
(without pre-processing) from the TIP benchmark suite (http://fmv.jku.at/
aiger/tip-aig-20061215.zip). We refer to the four benchmarks as hwcsafe,
hwcbug, tipsafe and tipbug, respectively.



ic3sync ic3async ic3proof ic3rnd
B |B∗| Mean Max Mean Max Mean Max Mean Max

hwcsafe 31 1.30 5.61 1.58 5.47 1.60 4.08 1.17 4.64
hwcbug 14 2.49 18.7 14.3 151 25.1 309 1.07 1.49
tipsafe 14 1.28 4.50 2.61 11.1 2.29 12.8 1.37 3.80
tipbug 9 2.23 5.35 2.82 7.32 3.50 12.1 1.16 2.17

safe 44 1.30 5.61 1.93 11.1 1.83 12.8 1.24 4.64
bug 23 2.38 18.7 9.58 151 16.3 309 1.11 2.17

all 67 1.67 18.7 4.74 151 6.79 309 1.19 4.64

ic3par2010

B |B+| Mean Max
hwcsafe 20 2.67 14.40
hwcbug 15 1.62 3.91
tipsafe 14 .89 1.82
tipbug 7 1.32 1.67

safe 34 1.94 14.40
bug 22 1.52 3.91

all 56 1.77 14.40

(a) (b)

Fig. 7. (a) Speedup of ic3sync, ic3async, ic3proof and ic3rnd compared to ic3ref;
(b) Speedup of ic3par2010 compared to ic3ref2010.

SAT Solver Pool. The function f (cf. Figs. 1–4) is implemented in ic3ref by
a SAT solver (minisat). A separate SAT solver Si is used for each f(i). Whenever
f(i) changes due to the addition of a new lemma to a frame, the corresponding
solver Si is also updated by asserting the lemma. To avoid a single SAT solver
from becoming the bottleneck between competing threads in ic3par, we use a
“pool” of minisat solvers to implement each Si. The solvers are maintained in a
FIFO queue. When a thread requests a solver, the first available solver is given
to it. When a lemma is added to the pool, it is added to all available solvers,
and recorded as “pending” for the busy ones. When a busy solver is released by
a thread, all pending lemmas are first asserted to it, and then it is inserted at
the back of the queue. We refer to the number of solvers in each pool as SPSz.

6.1 Comparing Parallel ic3 Variants

These experiments were carried on a Intel Xeon machine with 128 cores,
each running at 2.67GHz, and 1TB of RAM. For each solver selected from
{ic3async(4), ic3sync(4), ic3proof(4), ic3rnd} and each benchmark B, and
with SPSz = 3, we performed the following steps:

1. extract all problems from B that are solved by ic3ref in at least 10s; call
this set B∗; the cutoff of 10s was a tradeoff between problem complexity and
benchmark size; our goal was to avoid evaluating our approach on very simple
examples to limit measurement errors, and also to have enough examples for
statistically meaningful results;

2. solve each problem in B∗ with ic3ref and also with a portfolio of 20 solvers,
compute the ratio of the two runtimes; this is the speedup for the specific
problem;

3. compute the mean and max of the speedups over all problems in B∗.

Figure 7(a) shows the results obtained. In all cases, we see speedup. On
this particular run, ic3proof performs best overall, with an average speedup
of over 6 and a maximum speedup of over 300. As in the non-portfolio case



ρ - ic3async ρ - ic3sync ρ - ic3proof
Example Mean StDev Mean StDev Mean StDev
6s286 1.0000 0.0016 1.0010 0.0046 0.9996 0.0032

intel026 1.0042 0.0233 1.0028 0.0163 1.0027 0.0163
6s273 1.0025 0.0122 1.0031 0.0149 1.0030 0.0154

intel057 0.9968 0.0214 0.9855 0.0381 1.0002 0.0136
intel054 1.0029 0.0162 0.9998 0.0076 0.9994 0.0080

6s215 1.0001 0.0057 0.9988 0.0099 0.9991 0.0058
6s216 1.0038 0.0204 1.0025 0.0163 1.0034 0.0182

oski3ub1i 1.0063 0.0321 1.0055 0.0293 1.0049 0.0274
oski3ub3i 1.0042 0.0230 1.0049 0.0259 1.0053 0.0272
oski3ub5i 1.0061 0.0312 1.0070 0.0358 1.0069 0.0357
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Fig. 8. Validating Theorem 5; (a) mean and standard deviation of ratios of predicted
and observed probabilities; (b) scatter plot of predicted and observed probabilities.

(cf. Fig. 5) ic3proof and ic3async have similar performance, and are bet-
ter than ic3sync. The pattern is followed for both safe and buggy examples.
Finally, ic3rnd provides mediocre speedup (not just on the whole, but across
all examples) indicating that parallelization enables better search for shorter
proofs/CEXes compared to randomizing the SAT solver.

6.2 Comparing ic3par2010

We compared the parallel version of ic3 reported in the original paper [6], which
we refer to as ic3par2010, with our ic3par variants. We first downloaded the
source code 1 of ic3par2010. It comes with its own version of ic3 implemented
in Ocaml, which we refer to as ic3ref2010. The parallelization in ic3par2010
is implemented via three Python scripts that invoke the ic3 binary. We modified
these scripts to implement a solver with four copies of ic3 running in parallel.
This was done for a fairer comparison with our ic3par results presented earlier
which also used four copies of ic3 per solver. In addition, we made other changes
to the scripts to make the solver more robust (e.g., replacing hard coded TCP/IP
port numbers with dynamically selected ones). All experiments were done on the
same machine as in Sec. 6.1.

While ic3ref was quite deterministic in its runtime, ic3ref2010 demon-
strated random behavior in this respect. One source of this randomness is that
ic3ref2010 randomizes the backend SAT solver. However, there could be other
sources of randomness due to the management of the priority queue during
strengthen(). We were unable to eliminate the randomness satisfactorily via
command line options. Instead, we accounted for it by running experiments mul-
tiple times and computing the average. We computed the speedup of ic3par2010

1 http://ecee.colorado.edu/~bradleya/ic3/ic3.tar.gz



using a similar process as for the ic3par variants. Specifically, we performed the
following steps:

1. extract all problems from B that are solved by ic3ref2010 in at least 10s;
call this set B+; note that B+ differs from B∗ since the underlying solvers –
ic3ref2010 and ic3ref – have different solving capability.

2. solve each problem in B+ with ic3ref2010 twenty times and compute the
average runtime (call this ts) and also with ic3par2010 twenty times and
compute the average runtime (call this tp); compute the ratio ts

tp
; this is the

speedup with ic3par2010 for that specific problem;
3. compute the mean and max of the speedups over all problems in B+.

Figure 7(b) shows the results obtained. Comparing with Figure 7(a), we see
that all three of our ic3par invariants provided considerably better speedups
compared to ic3par2010 on the three benchmark groups hwcbug, tipsafe
and tipbug. Indeed, for the tipsafe group as a whole, ic3par2010 does not
provide a speedup. However, for the hwcsafe group, ic3par2010 provided bet-
ter speedups. If we look at all the safe examples, then ic3par2010 edges out
ic3par marginally. In contrast, for unsafe examples ic3par provides much better
speedups. Overall, ic3proof performs best. In summary, portfolios of ic3par
variants appear to be a good complement to ic3par2010, and a better option
for unsafe examples.

6.3 Portfolio Size

These experiments were done on a cluster of 11 machines, each with 16 cores
at 2.4GHz, and between 48GB and 190GB of RAM. To validate Theorem 5, we
compared its predictions to empirically observed results as follows (again using
SPSz = 3):

1. Process each problem from Fig. 5 as follows.
2. Solve the problem b (≈ 3000) times using ic3par(4). This gives a set of

runtimes t1, . . . , tb. Fit these runtimes to a Weibull distribution to obtain
the estimated value of k (the same as the second column of Fig. 5).

3. Compute t̃ = mean(t1, . . . , tb). This is the estimated average time for
ic3par(4) to solve the problem.

4. Pick a portfolio size m. Start with m = 1.
5. Divide t1, . . . , tb into blocks of size m. Let B = b bmc. We now have B blocks of

runtime T1, . . . , TB , each consisting of m elements. Thus, T1 = {t1, . . . , tm},
T2 = {tm+1, . . . , t2m}, and so on. For i = 1, . . . , B, compute µi = min(Ti).
Note that each µi is the runtime of a portfolio of m ic3par(4) solvers.

6. Let n(m) be the number of blocks for which µi ≤ t̃, i.e., n(m) =

|{i ∈ [1, B] | µi ≤ t̃}|. Compute p∗(m) = n(m)
B . Note that p∗(m) is the es-

timate of p(m) based on our experiments. Compute p(m) = 1 − (α(k))m

(use k from Step 2). Compute ρ(m) = p∗(m)
p(m) . We expect ρ(m) ≈ 1.

7. Repeat steps 5 and 6 with m = 2, . . . , 100 to obtain the sequence ρ =
〈ρ(1), . . . , ρ(100)〉. Compute the mean and standard deviation of ρ.



Fig. 9. Heatmap of ic3proof runtimes for three examples. Deeper color of cell (i, s)
indicates that ic3proof(i, s) solves the benchmark faster; n = total number of runs of
ic3proof over all 64 values of (i, s).

Fig. 8(a) shows the results of the above steps for each ic3par variant. We see
that for each example, the mean of ρ is very close to 1 and its standard deviation
is very close to 0, indicating that p(m) and p∗(m) agree considerably. Fig. 8(b)
shows a scatter plot of all p∗(m) values computed against their corresponding
p(m). Note that most values are very close to the (red) x = y line, as expected.

6.4 Parameter Sweeping

ic3par has two parameters: number of ic3 threads and SPSz. We write
ic3par(i, s) to mean an instance of ic3par with i ic3 threads and SPSz = s.
Thus, ic3par(4, 3) was used is all previous experiments. We observed in Sec. 6.1
that different ic3par variants perform the best for different benchmarks. We
now evaluate the performance of ic3proof by varying i and s. These experi-
ments were also done on our cluster (cf. Sec. 6.3). We begin with a conjecture
about the relationship of runtime and parameter values.

Conjecture 2. The parameter value affects performance of ic3par significantly,
and the best parameter choice is located unpredictably in the input space.

To investigate Conjecture 2, we measured the runtime of ic3proof(i, s) for
each (i, s) ∈ I × S where I = S = {1, . . . , 8}. We selected 16 examples from
B. For each example η, and each (i, s) ∈ I × S, we executed ic3proof(i, s) on
η “around” 3000 times (again, the exact number varied across examples due to
timeouts) and computed the average runtime. This gives us the entry at (i, s) for
the “heatmap” for η. The heatmaps in Fig. 9 summarize our results for three of
the benchmarks that we found to be representative. They support Conjecture 2,
as average runtimes (indicated by the color depth of cells in the heatmaps) across
the parameter space are varied. The depth of cells show no discernable pattern
(e.g., do not increase with i or s), and the deepest cells are significantly more
so than the lightest ones. This implies that: (i) selecting the best parameters for
ic3proof would be quite beneficial; but (ii) this is a non-trivial problem.

As a preliminary step to address this challenge, we ran portfolios of a solver
that uses parameter sweeping [2]. Specifically, the solver (denoted ic3sweep)



Time Speedup
Example ic3ref Sync Async Proof Sweep
6s286 947.6 1.54 1.57 1.66 1.77

intel026 78.33 2.61 2.77 2.85 2.58
6s273 31.06 1.84 1.88 1.90 1.65

intel057 31.33 2.45 2.49 2.49 2.66
intel054 55.89 3.52 3.51 3.52 3.92
Mean 2.39 2.44 2.48 2.52

Time Speedup
Example ic3ref Sync Async Proof Sweep
6s215 12.20 2.47 2.57 2.61 2.36
6s216 67.24 4.33 4.35 4.30 4.29

oski3ub1i 83.64 1.90 1.97 1.94 1.96
oski3ub3i 79.41 1.90 1.94 1.99 1.94
oski3ub5i 127.3 2.66 2.65 2.67 2.76
Mean 2.65 2.70 2.70 2.66

Fig. 10. Parameter sweeping; Sync, Async, Proof, Sweep = average speedups over
ic3ref for portfolios of 20 ic3sync (4,3), ic3async (4,3), ic3proof (4,3), and
ic3sweep, respectively.

executes a randomly selected ic3par variant with a random (i, s) selected from
I × S. We compared the average speedup (over 50 runs) of a portfolio of 20
ic3sweeps with the average speedup (over 50 runs) of portfolios of 20 of each
of the three ic3par variants with fixed (i, s) = (4, 3). Fig 10 summarizes our
results. We observe that in general ic3sweep is competitive with each of the
ic3par variants (indeed, it performs best for the hardest examples from the safe
and buggy categories). We believe that parameter sweeping shows promise as a
strategy for real-life problems where good parameters would be difficult (if not
impossible) to compute.

7 Conclusion

We present three ways to parallelize ic3. Each variant uses a number of threads
to speed up the computation of an inductive invariant or a CEX, sharing lemmas
to minimize duplicated effort. They differ in the degree of synchronization and
technique to detect if an inductive invariant has been found. The runtime of
these solvers is unpredictable, and varies with thread-interleaving. We explore
the use of portfolios to counteract the runtime variance. Each solver in the
portfolio potentially searches for a different proof/CEX. The first one to succeed
provides the solution. Using the Extreme Value theorem and statistical analysis,
we construct a formula that gives us a portfolio size to solving a problem within
a target time bound with a certain probability. Experiments on HWMCC14
benchmarks show that the combination of parallelization and portfolios yields
an average speedups of 6x over ic3, and in some cases speedups of over 300. We
show that parameter sweeping is a promising approach to implement a solver
that performs well over a wide range of problems of unknown difficulty. An
important area of future work is the effectiveness of parallelization and portfolios
in the context of software verification via a generalization of ic3 [12].
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