
Learning Doubly Labeled Automata using

Queries and Counterexamples

Unpublished Manuscript

Sagar Chaki
chaki@sei.cmu.edu

Software Engineering Institute, CMU

1 Background and Notation

In this section we present some basic definitions. We begin with doubly labeled
automata (DLAs) which can be thought of as Kripke structres enhanced in two
directions: (i) transitions are labeled with actions, and (ii) there is a notion of
final or accepting states.

Definition 1 (DLA). A doubly labeled automaton (DLA) is a 7-tuple
(S , Init ,AP ,L, Σ, δ,F) with (i) S a finite set of states, (ii) Init ⊆ S a set of ini-
tial states, (iii) AP a finite set of (atomic) state propositions, (iv) L : S → 2AP

a state-labeling function, (v) Σ a finite set of events or actions (alphabet), (vi)
δ ⊆ S ×Σ × S a transition relation, and (vii) F ⊆ S is a set of final states.

Definition 2 (Concatenation). Given two sets X and Y we will denote the
set {x • y | x ∈ X ∧ y ∈ Y } by X • Y where x • y denotes the concatenation of x
and y.

Definition 3 (Word). Let M be any DLA with alphabet Σ and set of proposi-

tions AP. Let us denote the extended alphabet Σ • 2AP by Σ̂. Let us denote the
set 2AP • Σ̂∗ by W . An element of W is called a word of M . Intuitively, a word
of M is any non-empty finite alternating sequence of propositional labelings and
actions of M begining and ending with a propositional labeling. In particular,
note that if x is a word and y ∈ Σ̂∗ then x • y is again a word.

In the rest of this article we will often omit the DLA M associated with a
word whenever that DLA is clear from the context.

Definition 4 (Reachability). Let M = (S , Init ,AP ,L, Σ, δ,F) be any DLA
and w be any word of M . We denote by Reach(M,w) the set of states that M
can reach by starting from an initial state and simulating w. More precisely,
let w = 〈P1, α1, P2, α2, . . . , Pn−1, αn−1, Pn〉. Then Reach(M,w) is the set of all
states s of M which satisfy the following criteria: there exists a sequence of states
〈s1, . . . , sn〉 ∈ S∗ such that: (i) s1 ∈ Init, (ii) for 1 ≤ i ≤ n, Pi = L(si), (iii)
1 ≤ i < n, (si, αi, si+1) ∈ δ, and (iii) s = sn.

Definition 5 (Trace and Language). Let M = (S , Init ,AP ,L, Σ, δ,F) be an
DLA. A word w is said to be a trace of M iff Reach(M,w) ∩ F 6= ∅. In other
words, w is a trace of M iff M can reach an accepting state after simulating w

from an initial state. The language of M , denoted by L(M) is the set of all its
traces. Thus:

L(M) = {w | Reach(M,w) ∩ F 6= ∅}

Definition 6 (Trace containment). An DLA M1 is said to be trace contained
by an DLA M2 if L(M1) ⊆ L(M2). We denote this by M1 4 M2.

Definition 7 (Deterministic DLA). An DLA M = (S , Init ,AP ,L, Σ, δ,F)
is said to be a deterministic DLA (DDLA) iff the following conditions hold:

– For every possible propositional labeling P , M has exactly one initial state
labeled with P .

∀P ⊆ AP ¦ ∃!s ∈ Init ¦ L(s) = P

– Every state must have exactly one α-successor labeled with P for each α in
the alphabet and each possible propositional labeling P .

∀s1 ∈ S ¦ ∀α ∈ Σ ¦ ∀P ⊆ AP ¦ ∃!s2 ∈ S ¦ s1
α
−→ s2 ∧ L(s2) = P

It is obvious from the above definition that a deterministic DLA M can al-
ways simulate any word w. In addition, it reaches a unique state after simulating
w. This is expressed by the following theorem.

Theorem 1. For any deterministic DLA M and any word w of M ,
|Reach(M,w)| = 1.

The following theorem expresses the equivalence of non-deterministic and
deterministic DLAs as far as languages are concerned.

Theorem 2. For every non-deterministic DLA M1 there exists a deterministic
DLA M2 such that L(M1) = L(M2).

Proof. The proof is constructive. Given a non-deterministic DLA M1 we can
convert it to a deterministic DLA via subset construction. This will be slightly
different from the subset construction for ordinary finite automata since we will
only group together successors that can be reached via the same action and also
agree on their propositional labelings.

ut

Definition 8 (Composition). Let M1 = (S1, Init1,AP1,L1, Σ1, δ1,F1)
and M2 = (S2, Init2,AP2,L2, Σ2, δ2,F2) be two DLAs. The paral-
lel composition of M1 and M2, denoted by M1 ‖M2, is the DLA
(S1 × S2, Init1 × Init2,AP1 ∪AP2,L, Σ1 ∪Σ2, δ,F1 × F2), where: (i)

L(s1, s2) = L1(s1) ∪ L2(s2), and (ii) δ is such that (s1, s2)
α
−→ (s′1, s

′
2)

iff:

∀i ∈ {1, 2} ¦ (α 6∈ Σi ∧ si = s′i)
∨
(α ∈ Σi ∧ si

α
−→ s′i)

In other words, DLAs must synchronize on shared actions and proceed inde-
pendently on local actions. This notion of parallel composition is derived from
CSP [3].

2 DLA Learning

Our algorithm, called SE − L∗, is based on the L∗ algorithm which developed
by Angluin [1] and later improved by Rivest et. al. [2]. In the rest of this article,
we will denote the symmetric difference of two sets X and Y by X4Y .

2.1 Preliminaries

Let U be an unknown DLA over some alphabet Σ and set of propsotions AP .
Recall from Definition 3 that we denote the set Σ • 2AP by Σ̂. Also recall the
definition of a word and that the set of all words is denoted by W .

Definition 9 (Prefix Closed). A set X ⊆ W is said to prefix-closed if for
each x ∈ X, it is the case that every element of W that is a prefix of x is also in
X. Note that we are not interested in every prefix of x but only in those prefixes
of x which are also words.

Definition 10 (Last Label). For any word w = 〈P1, α1, . . . , Pn〉 we write
P(w) to mean Pn. Thus P(w) is the propositional labeling at the end of w.

In the rest of this chapter we present the core SE − L∗ algorithm. We be-
gin with the notion of a minimally adequate teacher along the lines of the L∗

algorithm.

2.2 Minimally Adequate Teacher

In order to learn U , SE − L∗ interacts with a minimally adequate teacher MAT
for U , which can provide Boolean answers to the following two kinds of queries:

1. Membership. Given a word ρ ∈W , MAT returns true iff ρ ∈ L(U).

2. Candidate. Given an DLA D, MAT returns true iff L(D) = L(U). If MAT
returns false, it also returns a counterexample word w ∈ L(D)4L(U).

2.3 Observation Table

The SE − L∗ algorithm constructs iteratively a minimal DDLA D such that
L(D) = L(U). It maintains an observational table T = (S,E, T) where:

– S ⊆W is a prefix-closed set of words

– E ⊆ Σ̂∗ is a set of experiments

– T : (S ∪ S • Σ̂) • E → {0, 1} is a function such that:

∀s ∈ S ∪ S • Σ̂ ¦ ∀e ∈ E ¦ T [s • e] = 1 ⇐⇒ s • e ∈ L(U)

Intuitively, one can think of T as a two dimensinal table. The rows of T
are labeled with the elements of S ∪ S • Σ̂ while the columns are labeled with
elements of E. Finally T denotes the table entries. In other words the entry
corresponding to row s and column e is simply T (s • e). Carrying on with this

intuition, let us define, for any s ∈ S ∪ S • Σ̂, a function row(s) as follows:

∀e ∈ E ¦ row(s)(e) = T [s • e]

Intuitively, row(s) denotes the sequence of table entries corresponding to the

row s. For any two elements s1 and s2 of S ∪ S • Σ̂, let us write Diff (s1, s2) to
mean that s1 and s2 either have different propositional labelings at the end or
have different corresponding row entries. In other words:

Diff (s1, s2) ≡ P(s1) 6= P(s2) ∨ row(s1) 6= row(s2)

Then the following invariant will always hold on the table maintained by
SE − L∗:

CONSISTENCY : ∀s1, s2 ∈ S ¦ s1 6= s2 =⇒ Diff (s1, s2)

In other words, any two distinct entries in S must differ either in their
end propositional labelings or in their corresponding row entries. A table
T = (S,E, T) is said to be closed if the following condition hold:

∀t ∈ S • Σ̂ ¦ ∃s ∈ S ¦ ¬Diff (s, t)

The following theorem is crucial for proving termination of SE − L∗. It es-
sentially provides an upper bound on the size of S.

Theorem 3. Let n be the number of states in a minimal DDLA M such that
L(M) = L(U). Then the size of S cannot exceed n.

Proof. The proof is by contradiction. Suppose that the size of S exceeds n.
Then by the pigeon-hole principle, there exists two elements s1 and s2 of S
such that s1 6= s2 and Reach(M, s1) = Reach(M, s2). From this it follows that
P(s1) = P(s2) and row(s1) = row(s2). In other words ¬Diff (s1, s2). However
this contradicts the CONSISTENCY invariant since we now have two distinct
elements of S which do not differ. This concludes the proof.

ut

2.4 Candidate Construction

Given a closed table T = (S,E, T), we denote by MT =
(ST , InitT ,APT ,LT , ΣT , δT ,FT) the DDLA constructed from T as follows:

– The states of MT are the rows corresponding to S: ST = {row(s) | s ∈ S}.
– The initial states of MT are defined as follows: InitT = {row(s) | s ∈ 2

AP}.
– The atomic propositions and alphabet of MT are the same as that of U .

– The propositional labeling of MT is defined as: LT (row(s)) = P(s).
– The set of final states is defined as: FT = {row(s) | T (s) = 1}.
– The transition relation δT is defined as follows:

∀s, s′ ∈ S ¦ ∀a ∈ Σ̂ ¦ (s, a, s′) ∈ δT ⇐⇒ ¬Diff (s • a, s′)

Note that any DLA derived from a close observation table by the above
procedure obeys the conditions specified in Definition 7.

2.5 SE − L
∗

Let us denote the empty string by λ. Then SE − L∗ starts with a table T =
(S,E, T) such that S = 2AP and E = {λ} and in each iteration proceeds as
follows.

1. It first updates T using membership queries till it is closed.
2. Next SE − L∗ builds a candidate DDLA MT from the table and makes a
candidate query with MT .

3. If the MAT returns true to the candidate query, SE − L∗ returns MT and
stops.

4. Otherwise, SE − L∗ updates E by adding to it a single new element and
repeats from step 1.

Algorithm SE − L∗

1: S := 2AP ; E := {λ};

2: forever do

3: CloseTable();

4: M := candidate DLA constructed from T ;

5: if (IsCandidate(M)) return M ;

6: let CE be the counterexample returned by IsCandidate;

7: E := E ∪ {NewExperiment(CE)};

Fig. 1. Pseudo-code for algorithm SE − L∗.

The new element (let us call it e) added to E in step 4 is derived from the
counterexample to the candidate query made in step 2. It is such that when e is
added to E and the table made closed again (in the next iteration of SE − L∗),
the size of S is guaranteed to increase by at least one. Since the size of S cannot
increase indefinitely (by Theorem 3) there can only be a finite number of failed
candidate queries. The process of constructing e will be presented later. The
pseudo-code for SE − L∗ is presented in Figure 1.

At line 3, the function CloseTable create a closed table T using membership
queries. At line 4, a candidate M is derived from T as described in Section 2.4.
At line 5 the function IsCandidate performs a candidate query using M . If the
candidate query passes then M is returned as the final result. Otherwise, at line
7, a new experiment is constructed from the counterexample CE by function
NewExperiment. This new experiment is added to E and the entire loop
is repeated. We now describe functions CloseTable and NewExperiment is
more detail.

Algorithm CloseTable. The pseudo-code for algorithm CloseTable is pre-
sented in Figure 2. It iteratively identifies elements in S • Σ̂ which cause the
table to be not closed and adds these elements to the set S. In each iteration
the size of S increases by one. Also, the size of S cannot increase indefinitely
because of Theorem 3. Hence CloseTable must always terminate with a closed
table.

Algorithm CloseTable

1: forever do

2: if (∀t ∈ S • Σ̂ ¦ ∃s ∈ S ¦ ¬Diff (s, t)) return;

3: //table is already closed

4: find t ∈ S • Σ̂ such that ∀s ∈ S ¦ Diff (s, t);

5: S := S ∪ {t}; //note that this maintains CONSISTENCY

Fig. 2. Pseudo-code for algorithm CloseTable.

Algorithm NewExperiment. We now describe the algorithm
NewExperiment. Recall that NewExperiment returns a new experi-
ment e based on a counterexample CE to a candidate query. The experiment
e should be such that when it is added to E and the table closed, the size of
S will increase by at least one. Let M be the candidate for which CE is the
counterexample. In other words CE ∈ L(M)4L(U). Let CE be of the form
〈P1, α1, . . . , αn−1, Pn〉.
For 1 ≤ i ≤ n, let pi be the prefix of CE up to Pi and let ri be the suffix of

CE after Pi. For example, let n = 3. Then p1 = 〈P1〉 and r1 = 〈α1, P2, α2, P3〉.
Similary p2 = 〈P1, α1, P2〉 and r2 = 〈α2, P3〉.
For 1 ≤ i ≤ n, let row(si) be the state reached by simulating pi on M . In

other words, let row(si) be the unique element (cf. Theorem 1) of Reach(M,pi).
Recall that every state of M is a row corresponding to some element of S. Then
let bi be 1 if si • ri ∈ L(U) and 0 otherwise.
It easy to see that we can evaluate bi using a membership query on si • ri

for any i ∈ {1, . . . , n}. Since CE ∈ L(M)4L(U), we know that b1 6= bn. Hence

we can find a k ∈ {1, . . . , n} such that bk 6= bk+1 by doing a binary search along
CE . Then the experiment e to be returned by NewExperiment is simply rk+1.
Clearly NewExperiment always terminates.

Correctness of NewExperiment. Let CE be of the form
〈P1, α1, . . . , αn−1, Pn〉 and suppose NewExperiment returns rk+1. Let
pk and pk+1 be the prefixes of CE up to Pk and Pk+1 respectively. Let
row(sk) and row(sk+1) be the states of M reached by simulating pk and pk+1

respectively.
Now consider the word w = sk • αk • P(sk+1). Since sk belongs to S, w

belongs to S • Σ̂. Also since there is a transition in M of the form row(sk)
αk−→

row(sk+1) we know that ¬Diff (w, sk+1).
Since sk+1 differs from every other element of S so does w. We now show

that after adding rk+1 to E, w must also differ sk+1. Hence to make the table
closed, w must be added to S. This will lead to the size of S increasing by at
least one.
It is easy to see that w must differ from sk+1 on the experiment rk+1. This

is because the table entry T [w • rk+1] must be the same as bk. On the other
hand the table entry T [sk+1 • rk+1] must be the same as bk+1. Since we already
know that bk 6= bk+1, it must be the case that T [w • rk+1] 6= T [sk+1 • rk+1]. This
completes our proof.

ut

Theorem 4. Algorithm SE − L∗ always terminates with the correct result.

Proof. That SE − L∗ terminates with the correct result is obvious since it stops
only after a candidate query has passed. To prove that it always terminates it
suffices to note that every step in the top-level loop (line 2) terminates. Also as
we showed earlier there can only be a finite number of failed candidate queries
and hence a finite number of iterations of the top-level loop.

ut

References

1. D. Angluin. Learning regular sets from queries and counterexamples. In Information

and Computation, volume 75(2), pages 87–106, November 1987.
2. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing se-

quences. In Information and Computation, volume 103(2), pages 299–347, April
1993.

3. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Interna-
tional, London, 1997.

